Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Int ; 146: 106194, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33115697

RESUMO

We present a list of Chemicals of Concern (CoCs) in plastic toys. We started from available studies reporting chemical composition of toys to group plastic materials, as well as to gather mass fractions and function of chemicals in these materials. Chemical emissions from plastic toys and subsequent human exposures were then estimated using a series of models and a coupled near-field and far-field exposure assessment framework. Comparing human doses with reference doses shows high Hazard Quotients of up to 387 and cancer risk calculated using cancer slope factors of up to 0.0005. Plasticizers in soft plastic materials show the highest risk, with 31 out of the 126 chemicals identified as CoCs, with sum of Hazard Quotients >1 or child cancer risk >10-6. Our results indicate that a relevant amount of chemicals used in plastic toy materials may pose a non-negligible health risk to children, calling for more refined investigations and more human- and eco-friendly alternatives. The 126 chemicals identified as CoCs were compared with other existing regulatory prioritization lists. While some of our chemicals appear in other lists, we also identified additional priority chemicals that are not yet covered elsewhere and thus require further attention. We finally derive for all considered chemicals the maximum Acceptable Chemical Content (ACC) in the grouped toy plastic materials as powerful green chemistry tool to check whether chemical alternatives could create substantial risks.


Assuntos
Exposição Ambiental , Plásticos , Criança , Exposição Ambiental/análise , Humanos , Plastificantes/análise , Plastificantes/toxicidade , Jogos e Brinquedos , Medição de Risco
2.
Environ Sci Technol ; 50(6): 2782-95, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26830787

RESUMO

The modeling of land use impacts on biodiversity is considered a priority in life cycle assessment (LCA). Many diverging approaches have been proposed in an expanding literature on the topic. The UNEP/SETAC Life Cycle Initiative is engaged in building consensus on a shared modeling framework to highlight best-practice and guide model application by practitioners. In this paper, we evaluated the performance of 31 models from both the LCA and the ecology/conservation literature (20 from LCA, 11 from non-LCA fields) according to a set of criteria reflecting (i) model completeness, (ii) biodiversity representation, (iii) impact pathway coverage, (iv) scientific quality, and (v) stakeholder acceptance. We show that LCA models tend to perform worse than those from ecology and conservation (although not significantly), implying room for improvement. We identify seven best-practice recommendations that can be implemented immediately to improve LCA models based on existing approaches in the literature. We further propose building a "consensus model" through weighted averaging of existing information, to complement future development. While our research focuses on conceptual model design, further quantitative comparison of promising models in shared case studies is an essential prerequisite for future informed model choice.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Atividades Humanas , Modelos Biológicos , Humanos
3.
Proc Natl Acad Sci U S A ; 112(24): 7402-7, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26082547

RESUMO

The agricultural expansion and intensification required to meet growing food and agri-based product demand present important challenges to future levels and management of biodiversity and ecosystem services. Influential actors such as corporations, governments, and multilateral organizations have made commitments to meeting future agricultural demand sustainably and preserving critical ecosystems. Current approaches to predicting the impacts of agricultural expansion involve calculation of total land conversion and assessment of the impacts on biodiversity or ecosystem services on a per-area basis, generally assuming a linear relationship between impact and land area. However, the impacts of continuing land development are often not linear and can vary considerably with spatial configuration. We demonstrate what could be gained by spatially explicit analysis of agricultural expansion at a large scale compared with the simple measure of total area converted, with a focus on the impacts on biodiversity and carbon storage. Using simple modeling approaches for two regions of Brazil, we find that for the same amount of land conversion, the declines in biodiversity and carbon storage can vary two- to fourfold depending on the spatial pattern of conversion. Impacts increase most rapidly in the earliest stages of agricultural expansion and are more pronounced in scenarios where conversion occurs in forest interiors compared with expansion into forests from their edges. This study reveals the importance of spatially explicit information in the assessment of land-use change impacts and for future land management and conservation.


Assuntos
Agricultura , Biodiversidade , Conservação dos Recursos Naturais/métodos , Brasil , Sequestro de Carbono , Ecossistema , Meio Ambiente , Modelos Teóricos
5.
Science ; 344(6188): 1109-13, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24904154

RESUMO

In the modern economy, international value chains--production, use, and disposal of goods--have global environmental impacts. Life Cycle Assessment (LCA) aims to track these impacts and assess them from a systems perspective, identifying strategies for improvement without burden shifting. We review recent developments in LCA, including existing and emerging applications aimed at supporting environmentally informed decisions in policy-making, product development and procurement, and consumer choices. LCA constitutes a viable screening tool that can pinpoint environmental hotspots in complex value chains, but we also caution that completeness in scope comes at the price of simplifications and uncertainties. Future advances of LCA in enhancing regional detail and accuracy as well as broadening the assessment to economic and social aspects will make it more relevant for producers and consumers alike.


Assuntos
Economia/tendências , Manufaturas/provisão & distribuição , Meios de Transporte/economia
6.
Environ Sci Pollut Res Int ; 14(5): 338-44, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17722769

RESUMO

GOAL, SCOPE AND BACKGROUND: The issue of whether food miles are a relevant indicator for the environmental impacts associated with foods has received significant attention in recent years. It is suggested here that issues other than the distance travelled need to be considered. The argument is presented by illustrating the case for the provision of apples. MATERIALS AND METHODS: The effects of variability in primary energy requirements for apple cultivation and for other life cycle stages, seasonality (timing of consumption) and loss of produce during storage are studied in this paper, by comparing apples from different supplier countries for consumption in Europe. RESULTS: Data sources for primary energy use (PEU) of apple production are identified ranging from 0.4-3.8 MJ/kg apples for European and Southern American countries and 0.4-0.7 MJ/kg for New Zealand. This variability is related to different yields and producer management practices in the different countries. Storage loss may range from 5% to 40% for storage periods between 4 and 10 months, and this has a significant effect on the results (e.g. increasing the total PEU by 8-16% when stored for 5-9 months in Europe as compared with a no loss and no storage situation). The storage periods and related storage losses change markedly through the year for imported (i.e. non-European) versus European apples. DISCUSSION: The timing of consumption and related storage losses need to be included in the assessment, as this affects the order of preference for locally sourced versus imported apples. The variability in energy requirements in different life cycle stages, but particularly for the fruit production stage, is also significant in this comparative analysis. CONCLUSIONS: Overall, it seems that there are similarities in the total PEU ranges for European and New Zealand apples during the Southern Hemisphere's apple season (European spring and summer). However, during the European autumn and winter (Northern Hemisphere apple season) PEU values are generally higher for apples imported from the Southern Hemisphere compared with European apples consumed in Europe. However, this latter observation may not hold true where apples for consumption in one European country are imported from another European country, because energy use for road transportation has a significant influence on the result. RECOMMENDATIONS AND PERSPECTIVES: Future studies comparing alternative sources of fresh produce need to account for ranges of data for the fruit production and storage stages, which reflect the seasonality of production.


Assuntos
Comércio , Conservação de Recursos Energéticos , Frutas , Malus , Europa (Continente) , Nova Zelândia , Meios de Transporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA