Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Br J Cancer ; 127(5): 824-835, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35715634

RESUMO

BACKGROUND: Glioblastoma is the most aggressive form of brain cancer, characterised by high proliferation rates and cell invasiveness. Despite advances in surgery and radio-chemotherapy, patients continue to have poor prognoses, with a survival rate of 14-15 months. Thus, new therapeutic strategies are needed. Non-ionising electromagnetic fields represent an emerging option given the potential advantages of safety, low toxicity and the possibility to be combined with other therapies. METHODS: Here, the anticancer activity of quantum molecular resonance (QMR) was investigated. For this purpose, three glioblastoma cell lines were tested, and the QMR effect was evaluated on cancer cell proliferation rate and aggressiveness. To clarify the QMR mechanism of action, the proteomic asset after stimulation was delineated. Mesenchymal stromal cells and astrocytes were used as healthy controls. RESULTS: QMR affected cancer cell proliferation, inducing a significant arrest of cell cycle progression and reducing cancer tumorigenicity. These parameters were not altered in healthy control cells. Proteomic analysis suggested that QMR acts not only on DNA replication but also on the machinery involved in the mitotic spindle assembly and chromosome segregation. Moreover, in a combined therapy assessment, QMR significantly enhanced temozolomide efficacy. CONCLUSIONS: QMR technology appears to be a promising tool for glioblastoma treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Proteômica , Temozolomida/farmacologia
3.
Cells ; 7(10)2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304769

RESUMO

MYC-translocated T-lineage acute lymphoblastic leukemia (T-ALL) is a rare subgroup of T-ALL associated with CDKN2A/B deletions, PTEN inactivation, and absence of NOTCH1 or FBXW7 mutations. This subtype of T-ALL has been associated with induction failure and aggressive disease. Identification of drug targets and mechanistic insights for this disease are still limited. Here, we established a human NOTCH1-independent MYC-translocated T-ALL cell line that maintains the genetic and phenotypic characteristics of the parental leukemic clone at diagnosis. The University of Padua T-cell acute lymphoblastic leukemia 13 (UP-ALL13) cell line has all the main features of the above described MYC-translocated T-ALL. Interestingly, UP-ALL13 was found to harbor a heterozygous R882H DNMT3A mutation typically found in myeloid leukemia. Chromatin immunoprecipitation coupled with high-throughput sequencing for histone H3 lysine 27 (H3K27) acetylation revealed numerous putative super-enhancers near key transcription factors, including MYC, MYB, and LEF1. Marked cytotoxicity was found following bromodomain-containing protein 4 (BRD4) inhibition with AZD5153, suggesting a strict dependency of this particular subtype of T-ALL on the activity of super-enhancers. Altogether, this cell line may be a useful model system for dissecting the signaling pathways implicated in NOTCH1-independent T-ALL and for the screening of targeted anti-leukemia agents specific for this T-ALL subgroup.

4.
Nano Lett ; 18(1): 117-123, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29202578

RESUMO

Development of miniaturized devices for the rapid and sensitive detection of analyte is crucial for various applications across healthcare, pharmaceutical, environmental, and other industries. Here, we report on the detection of unlabeled analyte by using fluorescently labeled, antibody-conjugated microtubules in a kinesin-1 gliding motility assay. The detection principle is based on the formation of fluorescent supramolecular assemblies of microtubule bundles and spools in the presence of multivalent analytes. We demonstrate the rapid, label-free detection of CD45+ microvesicles derived from leukemia cells. Moreover, we employ our platform for the label-free detection of multivalent proteins at subnanomolar concentrations, as well as for profiling the cross-reactivity between commercially available secondary antibodies. As the detection principle is based on the molecular recognition between antigen and antibody, our method can find general application where it identifies any analyte, including clinically relevant microvesicles and proteins.


Assuntos
Anticorpos Imobilizados/química , Técnicas Biossensoriais/métodos , Corantes Fluorescentes/química , Antígenos Comuns de Leucócito/análise , Microtúbulos/química , Linhagem Celular Tumoral , Humanos , Proteínas Imobilizadas/química , Cinesinas/química , Leucemia/patologia , Imagem Óptica/métodos
5.
Blood ; 130(25): 2750-2761, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29101238

RESUMO

Pediatric T-acute lymphoblastic leukemia (T-ALL) patients often display resistance to glucocorticoid (GC) treatment. These patients, classified as prednisone poor responders (PPR), have poorer outcome than do the other pediatric T-ALL patients receiving a high-risk adapted therapy. Because glucocorticoids are administered to ALL patients during all the different phases of therapy, GC resistance represents an important challenge to improving the outcome for these patients. Mechanisms underlying resistance are not yet fully unraveled; thus our research focused on the identification of deregulated signaling pathways to point out new targeted approaches. We first identified, by reverse-phase protein arrays, the lymphocyte cell-specific protein-tyrosine kinase (LCK) as aberrantly activated in PPR patients. We showed that LCK inhibitors, such as dasatinib, bosutinib, nintedanib, and WH-4-023, are able to induce cell death in GC-resistant T-ALL cells, and remarkably, cotreatment with dexamethasone is able to reverse GC resistance, even at therapeutic drug concentrations. This was confirmed by specific LCK gene silencing and ex vivo combined treatment of cells from PPR patient-derived xenografts. Moreover, we observed that LCK hyperactivation in PPR patients upregulates the calcineurin/nuclear factor of activated T cells signaling triggering to interleukin-4 (IL-4) overexpression. GC-sensitive cells cultured with IL-4 display an increased resistance to dexamethasone, whereas the inhibition of IL-4 signaling could increase GC-induced apoptosis in resistant cells. Treatment with dexamethasone and dasatinib also impaired engraftment of leukemia cells in vivo. Our results suggest a quickly actionable approach to supporting conventional therapies and overcoming GC resistance in pediatric T-ALL patients.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glucocorticoides/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Criança , Dasatinibe/farmacologia , Dexametasona/farmacologia , Xenoenxertos , Humanos , Interleucina-4/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Linfócitos/enzimologia , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Prednisona/farmacologia
6.
Mol Cancer Res ; 15(6): 683-695, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28202504

RESUMO

Circulating microvesicles have been described as important players in cell-to-cell communication carrying biological information under normal or pathologic condition. Microvesicles released by cancer cells may incorporate diverse biomolecules (e.g., active lipids, proteins, and RNA), which can be delivered and internalized by recipient cells, potentially altering the gene expression of recipient cells and eventually impacting disease progression. Leukemia in vitro model systems were used to investigate microvesicles as vehicles of protein-coding messages. Several leukemic cells (K562, LAMA-87, TOM-1, REH, and SHI-1), each carrying a specific chromosomal translocation, were analyzed. In the leukemic cells, these chromosomal translocations are transcribed into oncogenic fusion transcripts and the transfer of these transcripts was monitored from leukemic cells to microvesicles for each of the cell lines. Microarray gene expression profiling was performed to compare transcriptomes of K562-derived microvesicles and parental K562 cells. The data show that oncogenic BCR-ABL1 transcripts and mRNAs related to basic functions of leukemic cells were included in microvesicles. Further analysis of microvesicles cargo revealed a remarkable enrichment of transcripts related to cell membrane activity, cell surface receptors, and extracellular communication when compared with parental K562 cells. Finally, coculturing of healthy mesenchymal stem cells (MSC) with K562-derived microvesicles displayed the transfer of the oncogenic message, and confirmed the increase of target cell proliferation as a function of microvesicle dosage.Implications: This study provides novel insight into tumor-derived microvesicles as carriers of oncogenic protein-coding messages that can potentially jeopardize cell-directed therapy, and spread to other compartments of the body. Mol Cancer Res; 15(6); 683-95. ©2017 AACR.


Assuntos
Vesículas Extracelulares/genética , Perfilação da Expressão Gênica/métodos , Leucemia/genética , Biomarcadores Tumorais/genética , Carcinogênese/genética , Proliferação de Células/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Proteínas de Fusão bcr-abl/genética , Humanos , Células K562 , Leucemia/patologia , Células-Tronco Mesenquimais/fisiologia , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética , RNA Mensageiro , Transdução de Sinais
7.
J Leukoc Biol ; 100(5): 1061-1070, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27312846

RESUMO

B cell chronic lymphocytic leukemia (CLL) is characterized by the accumulation of B lymphocytes from proliferative activity and apoptosis resistance. The increased awareness of the importance of B cell receptor signaling in CLL has raised new opportunities for targeted intervention. Herein, we describe a study performed with the high-throughput RPPA (reverse phase protein array) technique, which allowed us to simultaneously study different molecules in a large series of patients. We analyzed B lymphocytes from 57 patients with CLL and 11 healthy subjects. Different pathways were assessed for activation/expression of key signaling proteins. Data obtained were validated by Western blotting and confocal microscopy. The RPPA investigation and its validation, identified 3 series of proteins: 1) molecules whose expression levels reached statistically significant differences in CLL vs. healthy controls (HSP70, Smac/DIABLO, cleaved PARP, and cleaved caspase-6); 2) proteins with a positive trend of difference in CLL vs. healthy controls (HS1, γ-tubulin, PKC α/ß-II Thr-638/641, p38 MAPK Thr-180/Tyr-182, NF-κB Ser-536, Bcl2 Ser-70 and Src Tyr-527); and 3) molecules differentially expressed in patients with IGHV mutations vs. those without mutations (ZAP70, PKC-ζλ, Thr-410/403, and CD45). This study identified some molecules, particularly those involved in apoptosis control, which could be considered for further studies to design new therapeutic strategies in CLL.


Assuntos
Proteínas Reguladoras de Apoptose/análise , Apoptose , Linfócitos B/química , Peptídeos e Proteínas de Sinalização Intracelular/análise , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteínas de Neoplasias/análise , Análise Serial de Proteínas/métodos , Linfócitos B/patologia , Western Blotting , Perfilação da Expressão Gênica , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Microscopia Confocal
8.
Analyst ; 141(3): 836-46, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26617251

RESUMO

Lab-on-a-chip systems with molecular motor driven transport of analytes attached to cytoskeletal filament shuttles (actin filaments, microtubules) circumvent challenges with nanoscale liquid transport. However, the filaments have limited cargo-carrying capacity and limitations either in transportation speed (microtubules) or control over motility direction (actin). To overcome these constraints we here report incorporation of covalently attached antibodies into self-propelled actin bundles (nanocarriers) formed by cross-linking antibody conjugated actin filaments via fascin, a natural actin-bundling protein. We demonstrate high maximum antigen binding activity and propulsion by surface adsorbed myosin motors. Analyte transport capacity is tested using both protein antigens and microvesicles, a novel class of diagnostic markers. Increased incubation concentration with protein antigen in the 0.1-100 nM range (1 min) reduces the fraction of motile bundles and their velocity but maximum transportation capacity of >1 antigen per nm of bundle length is feasible. At sub-nanomolar protein analyte concentration, motility is very well preserved opening for orders of magnitude improved limit of detection using motor driven concentration on nanoscale sensors. Microvesicle-complexing to monoclonal antibodies on the nanocarriers compromises motility but nanocarrier aggregation via microvesicles shows unique potential in label-free detection with the aggregates themselves as non-toxic reporter elements.


Assuntos
Actinas/química , Anticorpos Monoclonais/química , Proteínas de Transporte/química , Micropartículas Derivadas de Células/química , Imunoglobulina G/análise , Proteínas dos Microfilamentos/química , Subfragmentos de Miosina/química , Animais , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Humanos , Imunoglobulina G/imunologia , Antígenos Comuns de Leucócito/imunologia , Microscopia de Fluorescência , Movimento (Física) , Coelhos , Rodaminas/química
9.
Exp Hematol ; 43(8): 625-39, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26123366

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive type of blood cancer that accounts for about 15% of pediatric and 25% of adult acute lymphoblastic leukemia (ALL) cases. It is considered as a paradigm for the multistep nature of cancer initiation and progression. Genetic and epigenetic reprogramming events, which transform T-cell precursors into malignant T-ALL lymphoblasts, have been extensively characterized over the past decade. Despite our comprehensive understanding of the genomic landscape of human T-ALL, leukemia patients are still treated by high-dose multiagent chemotherapy, potentially followed by hematopoietic stem cell transplantation. Even with such aggressive treatment regimens, which are often associated with considerable acute and long-term side effects, about 15% of pediatric and 40% of adult T-ALL patients still relapse, owing to acquired therapy resistance, and present with very dismal survival perspectives. Unfortunately, the molecular mechanisms by which residual T-ALL tumor cells survive chemotherapy and act as a reservoir for leukemic progression and hematologic relapse remain poorly understood. Nevertheless, it is expected that enhanced molecular understanding of T-ALL disease biology will ultimately facilitate a targeted therapy driven approach that can reduce chemotherapy-associated toxicities and improve survival of refractory T-ALL patients through personalized salvage therapy. In this review, we summarize recent biological insights into the molecular pathogenesis of T-ALL and speculate how the genetic landscape of T-ALL could trigger the development of novel therapeutic strategies for the treatment of human T-ALL.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Reprogramação Celular , Epigênese Genética , Transplante de Células-Tronco Hematopoéticas , Células Precursoras de Linfócitos T , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Humanos , Lactente , Células Precursoras de Linfócitos T/metabolismo , Células Precursoras de Linfócitos T/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia
10.
Oncotarget ; 5(14): 5234-45, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-25026300

RESUMO

Pediatric T-cell Acute Lymphoblastic Leukemia (T-ALL) outcome has improved in the last decades, yet one patient in every four still relapses. Except treatment response and immunophenotype, few markers are reliably prognostic in pediatric T-ALL patients. Aiming to improve T-ALL risk stratification, we investigated a new candidate biomarker with potential prognostic relevance. A phosphoproteomic screening of 98 pediatric T-ALL samples at diagnosis had been performed using the high-throughput Reverse Phase Protein Arrays technique, which led to the identification of PKCαS657 as an activated protein with a broad variation among T-ALL samples. To evaluate PKCα potential as a prognostic biomarker, PKCα expression was analyzed using RQ-PCR in a cohort of 173 patients, representative of ALL2000-ALLR2006 AIEOP study. A threshold of PKCα expression with the highest discrimination for incidence of relapse was identified. Patients with PKCα down-regulation, compared to patients with PKCα levels above the threshold, presented a markedly increased cumulative incidence of relapse (43.8% vs. 10.9%, P<0.001), as well as a worse 4-year overall survival (66% vs. 87.9%, P=0.002) and event-free survival (53.1% vs. 85.2%, P=0.002). In particular, low PKCα expression identified cases with extremely poor outcome within the high-risk minimal residual disease (MRD) stratum, their incidence of relapse being of 69% vs. 15% in the high PKCα levels group. In a multivariate analysis adjusting for main prognostic features, PKCα proved to be an independent prognostic factor related to incidence of relapse. Very high risk patients within the high-risk MRD stratum, identified by PKCα expression, could be proposed for experimental therapeutic protocols.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras/enzimologia , Proteína Quinase C-alfa/biossíntese , Adolescente , Biomarcadores Tumorais/genética , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Prognóstico , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Fatores de Risco , Transdução de Sinais , Taxa de Sobrevida , Resultado do Tratamento
11.
PLoS One ; 5(10): e13552, 2010 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21042412

RESUMO

BACKGROUND: In spite of leukemia therapy improvements obtained over the last decades, therapy is not yet effective in all cases. Current approaches in Acute Lymphoblastic Leukemia (ALL) research focus on identifying new molecular targets to improve outcome for patients with a dismal prognosis. In this light phosphoproteomics seems to hold great promise for the identification of proteins suitable for targeted therapy. METHODOLOGY/PRINCIPAL FINDINGS: We employed Reverse Phase Protein Microarrays to identify aberrantly activated proteins in 118 pediatric B-cell precursor (BCP)-ALL patients. Signal transduction pathways were assayed for activation/expression status of 92 key signalling proteins. We observed an increased activation/expression of several pathways involved in cell proliferation in poor clinical prognosis patients. MLL-rearranged tumours revealed BCL-2 hyperphosphorylation through AMPK activation, which indicates that AMPK could provide a functional role in inhibiting apoptosis in MLL-rearranged patients, and could be considered as a new potential therapeutic target. Second, in patients with poor clinical response to prednisone we observed the up-modulation of LCK activity with respect to patients with good response. This tyrosine-kinase can be down-modulated with clinically used inhibitors, thus modulating LCK activity could be considered for further studies as a new additional therapy for prednisone-resistant patients. Further we also found an association between high levels of CYCLIN E and relapse incidence. Moreover, CYCLIN E is more expressed in early relapsed patients, who usually show an unfavourable prognosis. CONCLUSIONS/SIGNIFICANCE: We conclude that functional protein pathway activation mapping revealed specific deranged signalling networks in BCP-ALL that could be potentially modulated to produce a better clinical outcome for patients resistant to standard-of-care therapies.


Assuntos
Leucemia de Células B/tratamento farmacológico , Adenilato Quinase/metabolismo , Western Blotting , Linhagem Celular Tumoral , Criança , Pré-Escolar , Humanos , Imunoprecipitação , Lactente , Leucemia de Células B/metabolismo , Leucemia de Células B/patologia , Proteínas de Neoplasias/metabolismo , Prednisona/uso terapêutico , Prognóstico , Proteômica , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA