Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Biomed Opt ; 29(9): 093502, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38715718

RESUMO

Significance: Developing stable, robust, and affordable tissue-mimicking phantoms is a prerequisite for any new clinical application within biomedical optics. To this end, a thorough understanding of the phantom structure and optical properties is paramount. Aim: We characterized the structural and optical properties of PlatSil SiliGlass phantoms using experimental and numerical approaches to examine the effects of phantom microstructure on their overall optical properties. Approach: We employed scanning electron microscope (SEM), hyperspectral imaging (HSI), and spectroscopy in combination with Mie theory modeling and inverse Monte Carlo to investigate the relationship between phantom constituent and overall phantom optical properties. Results: SEM revealed that microspheres had a broad range of sizes with average (13.47±5.98) µm and were also aggregated, which may affect overall optical properties and warrants careful preparation to minimize these effects. Spectroscopy was used to measure pigment and SiliGlass absorption coefficient in the VIS-NIR range. Size distribution was used to calculate scattering coefficients and observe the impact of phantom microstructure on scattering properties. The results were surmised in an inverse problem solution that enabled absolute determination of component volume fractions that agree with values obtained during preparation and explained experimentally observed spectral features. HSI microscopy revealed pronounced single-scattering effects that agree with single-scattering events. Conclusions: We show that knowledge of phantom microstructure enables absolute measurements of phantom constitution without prior calibration. Further, we show a connection across different length scales where knowledge of precise phantom component constitution can help understand macroscopically observable optical properties.


Assuntos
Método de Monte Carlo , Imagens de Fantasmas , Microscopia Eletrônica de Varredura , Espalhamento de Radiação , Microesferas , Imageamento Hiperespectral/métodos , Imageamento Hiperespectral/instrumentação
2.
Sensors (Basel) ; 23(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067685

RESUMO

Optical Coherence Tomography Angiography (OCTA) has revolutionized non-invasive, high-resolution imaging of blood vessels. However, the challenge of tail artifacts in OCTA images persists. In response, we present the Tail Artifact Removal via Transmittance Effect Subtraction (TAR-TES) algorithm that effectively mitigates these artifacts. Through a simple physics-based model, the TAR-TES accounts for variations in transmittance within the shallow layers with the vasculature, resulting in the removal of tail artifacts in deeper layers after the vessel. Comparative evaluations with alternative correction methods demonstrate that TAR-TES excels in eliminating these artifacts while preserving the essential integrity of vasculature images. Crucially, the success of the TAR-TES is closely linked to the precise adjustment of a weight constant, underlining the significance of individual dataset parameter optimization. In conclusion, TAR-TES emerges as a powerful tool for enhancing OCTA image quality and reliability in both clinical and research settings, promising to reshape the way we visualize and analyze intricate vascular networks within biological tissues. Further validation across diverse datasets is essential to unlock the full potential of this physics-based solution.


Assuntos
Artefatos , Tomografia de Coerência Óptica , Reprodutibilidade dos Testes , Tomografia de Coerência Óptica/métodos , Algoritmos
3.
Sensors (Basel) ; 23(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38067699

RESUMO

In this study, we introduce a novel hyperspectral imaging approach that leverages variable filament temperature incandescent lamps for active illumination, coupled with multi-channel image acquisition, and provide a comprehensive characterization of the approach. Our methodology simulates the imaging process, encompassing spectral illumination ranging from 400 to 700 nm at varying filament temperatures, multi-channel image capture, and hyperspectral image reconstruction. We present an algorithm for spectrum reconstruction, addressing the inherent challenges of this ill-posed inverse problem. Through a rigorous sensitivity analysis, we assess the impact of various acquisition parameters on the accuracy of reconstructed spectra, including noise levels, temperature steps, filament temperature range, illumination spectral uncertainties, spectral step sizes in reconstructed spectra, and the number of detected spectral channels. Our simulation results demonstrate the successful reconstruction of most spectra, with Root Mean Squared Errors (RMSE) below 5%, reaching as low as 0.1% for specific cases such as black color. Notably, illumination spectrum accuracy emerges as a critical factor influencing reconstruction quality, with flat spectra exhibiting higher accuracy than complex ones. Ultimately, our study establishes the theoretical grounds of this innovative hyperspectral approach and identifies optimal acquisition parameters, setting the stage for future practical implementations.

4.
Radiol Oncol ; 57(4): 411-418, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038417

RESUMO

BACKGROUND: Optical coherence tomography angiography (OCTA) is an emerging imaging modality that enables noninvasive visualization and analysis of tumor vasculature. OCTA has been particularly useful in clinical ocular oncology, while in this article, we evaluated OCTA in assessing microvascular changes in clinical nonocular oncology through a systematic review of the literature. METHOD: The inclusion criterion for the literature search in PubMed, Web of Science and Scopus electronic databases was the use of OCTA in nonocular clinical oncology, meaning that all ocular clinical studies and all ocular and nonocular animal, phantom, ex vivo, experimental, research and development, and purely methodological studies were excluded. RESULTS: Eleven articles met the inclusion criteria. The anatomic locations of the neoplasms in the selected articles were the gastrointestinal tract (2 articles), head and neck (1 article) and skin (8 articles). CONCLUSIONS: While OCTA has shown great advancements in ophthalmology, its translation to the nonocular clinical oncology setting presents several limitations, with a lack of standardized protocols and interpretation guidelines posing the most significant challenge.


Assuntos
Angiografia , Tomografia de Coerência Óptica , Tomografia de Coerência Óptica/métodos
5.
Sensors (Basel) ; 23(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36904578

RESUMO

Hyperspectral microscope imaging (HMI) is an emerging modality that integrates spatial information collected by standard laboratory microscopy and the spectral-based contrast obtained by hyperspectral imaging and may be instrumental in establishing novel quantitative diagnostic methodologies, particularly in histopathology. Further expansion of HMI capabilities hinges upon the modularity and versatility of systems and their proper standardization. In this report, we describe the design, calibration, characterization, and validation of the custom-made laboratory HMI system based on a Zeiss Axiotron fully motorized microscope and a custom-developed Czerny-Turner-type monochromator. For these important steps, we rely on a previously designed calibration protocol. Validation of the system demonstrates a performance comparable to classic spectrometry laboratory systems. We further demonstrate validation against a laboratory hyperspectral imaging system for macroscopic samples, enabling future comparison of spectral imaging results across length scales. An example of the utility of our custom-made HMI system on a standard hematoxylin and eosin-stained histology slide is also shown.


Assuntos
Imageamento Hiperespectral , Microscopia , Microscopia/métodos , Análise Espectral , Calibragem , Técnicas Histológicas
6.
Sensors (Basel) ; 23(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36850795

RESUMO

Optical techniques are often inadequate in estimating bruise age since they are not sensitive to the depth of chromophores at the location of the bruise. To address this shortcoming, we used pulsed photothermal radiometry (PPTR) for depth profiling of bruises with two wavelengths, 532 nm (KTP laser) and 1064 nm (Nd:YAG laser). Six volunteers with eight bruises of exactly known and documented times of injury were enrolled in the study. A homogeneous part of the bruise was irradiated first with a 5 ms pulse at 532 nm and then with a 5 ms pulse at 1064 nm. The resulting transient surface temperature change was collected with a fast IR camera. The initial temperature-depth profiles were reconstructed by solving the ill-posed inverse problem using a custom reconstruction algorithm. The PPTR signals and reconstructed initial temperature profiles showed that the 532 nm wavelength probed the shallow skin layers revealing moderate changes during bruise development, while the 1064 nm wavelength provided additional information for severe bruises, in which swelling was present. Our two-wavelength approach has the potential for an improved estimation of the bruise age, especially if combined with modeling of bruise dynamics.


Assuntos
Contusões , Humanos , Lasers , Radiometria , Algoritmos , Cultura
7.
Lasers Surg Med ; 55(1): 89-98, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36490355

RESUMO

BACKGROUND AND OBJECTIVES: In this study, we investigate the photothermal response of human hair using a pulsed laser source employed in the hair removal treatment. The purpose is to understand the dynamics behind the most common clinical practice to better define the salient features that may contribute to the efficiency of the process. STUDY DESIGN/MATERIALS AND METHODS: Temperature changes of hair samples (dark brown color) from a human scalp (skin type Fitpatrick II) were measured by a thermal camera following irradiation with single and multiple neodymium: yttrium-aluminum-garnet (Nd:YAG) (1064 nm) and alexandrite (755 nm) laser pulses. Particularly, the hair was treated with an individual laser pulse of a sufficiently high fluence, or with a series of lower fluence laser pulses. We investigated the temperature increase in a broad range of fluence and number of pulses. From the data analysis we extrapolated important parameters such as thermal gain and threshold fluence that can be used for determining optimal parameters for the hair removal procedure. Our experimental investigations and hypothesis were supported by a numerical simulation of the light-matter interaction in a skin-hair model, and by optical transmittance measurements of the irradiated hair. RESULTS: An enhancement of the temperature response of the irradiated hair, that deviates from the linear behavior, is observed when hair is subjected to an individual laser pulse of a sufficiently high fluence or to a series of lower fluence laser pulses. Here, we defined the nonlinear and rapid temperature built-up as an avalanche effect. We estimated the threshold fluence at which this process takes place to be at 10 and 2.5 J/cm2 for 1064 and 755 nm laser wavelengths, respectively. The thermal gain expressed by the degree of the deviation from the linear behavior can be higher than 2 when low laser fluence and multiple laser pulses are applied (n = 50). The comparison of the calculated gain for the two different laser wavelengths and the number of pulses reveals a much higher efficiency when low fluence and multiple pulses are delivered. The avalanche effect manifests when the hair temperature exceeds 45°C. The enhanced temperature increase during the subsequent delivery of laser pulses could be ascribed to the temperature-induced changes in the hair's structural properties. Simulations of the hair temperature under Nd:YAG and alexandrite irradiation indicate that the avalanche phenomenon observed in the hair suspended in air may apply also to the hair located within the skin matrix. Namely, for the same fluence, similar temperature increase was obtained also for the hair located within the skin. CONCLUSION: The observed "avalanche" effect may contribute to the reported clinical efficacy of laser hair removal and may at least partially explain the observed efficacy of the brushing hair removal procedures where laser fluence is usually low. The repeated irradiation during the brushing procedure may lead to an avalanche-like gradual increase of the hair's thermal response resulting in sufficiently high final hair temperatures as required for effective hair reduction.


Assuntos
Remoção de Cabelo , Lasers de Estado Sólido , Humanos , Remoção de Cabelo/métodos , Temperatura , Cabelo , Pele/efeitos da radiação , Resultado do Tratamento , Lasers de Estado Sólido/uso terapêutico
8.
J Biophotonics ; 16(1): e202200181, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36054067

RESUMO

Understanding tumors and their microenvironment are essential for successful and accurate disease diagnosis. Tissue physiology and morphology are altered in tumors compared to healthy tissues, and there is a need to monitor tumors and their surrounding tissues, including blood vessels, non-invasively. This preliminary study utilizes a multimodal optical imaging system combining hyperspectral imaging (HSI) and three-dimensional (3D) optical profilometry (OP) to capture hyperspectral images and surface shapes of subcutaneously grown murine tumor models. Hyperspectral images are corrected with 3D OP data and analyzed using the inverse-adding doubling (IAD) method to extract tissue properties such as melanin volume fraction and oxygenation. Blood vessels are segmented using the B-COSFIRE algorithm from oxygenation maps. From 3D OP data, tumor volumes are calculated and compared to manual measurements using a vernier caliper. Results show that tumors can be distinguished from healthy tissue based on most extracted tissue parameters ( p < 0.05 ). Furthermore, blood oxygenation is 50% higher within the blood vessels than in the surrounding tissue, and tumor volumes calculated using 3D OP agree within 26% with manual measurements using a vernier caliper. Results suggest that combining HSI and OP could provide relevant quantitative information about tumors and improve the disease diagnosis.


Assuntos
Imageamento Hiperespectral , Neoplasias , Humanos , Animais , Camundongos , Modelos Teóricos , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Microambiente Tumoral
9.
Radiol Oncol ; 56(4): 420-429, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36503709

RESUMO

BACKGROUND: Hyperspectral imaging (HSI) is a promising imaging modality that uses visible light to obtain information about blood flow. It has the distinct advantage of being noncontact, nonionizing, and noninvasive without the need for a contrast agent. Among the many applications of HSI in the medical field are the detection of various types of tumors and the evaluation of their blood flow, as well as the healing processes of grafts and wounds. Since tumor perfusion is one of the critical factors in oncology, we assessed the value of HSI in quantifying perfusion changes during interventions in clinical oncology through a systematic review of the literature. MATERIALS AND METHODS: The PubMed and Web of Science electronic databases were searched using the terms "hyperspectral imaging perfusion cancer" and "hyperspectral imaging resection cancer". The inclusion criterion was the use of HSI in clinical oncology, meaning that all animal, phantom, ex vivo, experimental, research and development, and purely methodological studies were excluded. RESULTS: Twenty articles met the inclusion criteria. The anatomic locations of the neoplasms in the selected articles were as follows: kidneys (1 article), breasts (2 articles), eye (1 article), brain (4 articles), entire gastrointestinal (GI) tract (1 article), upper GI tract (5 articles), and lower GI tract (6 articles). CONCLUSIONS: HSI is a potentially attractive imaging modality for clinical application in oncology, with assessment of mastectomy skin flap perfusion after reconstructive breast surgery and anastomotic perfusion during reconstruction of gastrointenstinal conduit as the most promising at present.


Assuntos
Mastectomia , Oncologia , Animais , Diagnóstico por Imagem , Imagens de Fantasmas , Meios de Contraste
10.
Biomedicines ; 10(11)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36359246

RESUMO

Understanding the tissue changes and molecular mechanisms of preclinical models is essential for creating an optimal experimental design for credible translation into clinics. In our study, a chlorhexidine (CHX)-induced mouse model of peritoneal fibrosis was used to analyze histological and molecular/cellular alterations induced by 1 and 3 weeks of intraperitoneal CHX application. CHX treatment for 1 week already caused injury, degradation, and loss of mesothelial cells, resulting in local inflammation, with the most severe structural changes occurring in the peritoneum around the ventral parts of the abdominal wall. The local inflammatory response in the abdominal wall showed no prominent differences between 1 and 3 weeks. We observed an increase in polymorphonuclear cells in the blood but no evidence of systemic inflammation as measured by serum levels of serum amyloid A and interleukin-6. CHX-induced fibrosis in the abdominal wall was more pronounced after 3 weeks, but the gene expression of fibrotic markers did not change over time. Complement system molecules were strongly expressed in the abdominal wall of CHX-treated mice. To conclude, both histological and molecular changes were already present in week 1, allowing examination at the onset of fibrosis. This is crucial information for refining further experiments and limiting the amount of unnecessary animal suffering.

11.
Tomography ; 8(5): 2347-2359, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36287795

RESUMO

Anatomically accurate models of a human finger can be useful in simulating various disorders. In order to have potential clinical value, such models need to include a large number of tissue types, identified by an experienced professional, and should be versatile enough to be readily tailored to specific pathologies. Magnetic resonance images were acquired at ultrahigh magnetic field (7 T) with a radio-frequency coil specially designed for finger imaging. Segmentation was carried out under the supervision of an experienced radiologist to accurately capture various tissue types (TTs). The final segmented model of the human index finger had a spatial resolution of 0.2 mm and included 6,809,600 voxels. In total, 15 TTs were identified: subcutis, Pacinian corpuscle, nerve, vein, artery, tendon, collateral ligament, volar plate, pulley A4, bone, cartilage, synovial cavity, joint capsule, epidermis and dermis. The model was applied to the conditions of arthritic joint, ruptured tendon and variations in the geometry of a finger. High-resolution magnetic resonance images along with careful segmentation proved useful in the construction of an anatomically accurate model of the human index finger. An example illustrating the utility of the model in biomedical applications is shown. As the model includes a number of tissue types, it may present a solid foundation for future simulations of various musculoskeletal disease processes in human joints.


Assuntos
Imageamento por Ressonância Magnética , Traumatismos dos Tendões , Humanos , Imageamento por Ressonância Magnética/métodos , Dedos , Ondas de Rádio , Tendões/diagnóstico por imagem , Tendões/patologia , Traumatismos dos Tendões/patologia
12.
Sensors (Basel) ; 22(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36016033

RESUMO

Hyperspectral imaging (HSI) is a promising optical modality that is already being used in numerous applications. Further expansion of the capabilities of HSI depends on the modularity and versatility of the systems, which would, inter alia, incorporate profilometry, fluorescence imaging, and Raman spectroscopy while following a rigorous calibration and verification protocols, thus offering new insights into the studied samples as well as verifiable, quantitative measurement results applicable to the development of quantitative metrics. Considering these objectives, we developed a custom-made laboratory HSI system geared toward biomedical applications. In this report, we describe the design, along with calibration, characterization, and verification protocols needed to establish such systems, with the overall goal of standardization. As an additional novelty, our HSI system uses a custom-built broadband LED-based light source for reflectance imaging, which is particularly important for biomedical applications due to the elimination of sample heating. Three examples illustrating the utility and advantages of the integrated system in biomedical applications are shown. Our attempt presents both the development of a custom-based laboratory HSI system with novel LED light source as well as a framework which may improve technological standards in HSI system design.


Assuntos
Imageamento Hiperespectral , Imagem Óptica , Calibragem , Imagem Óptica/métodos , Análise Espectral Raman
13.
Biomed Opt Express ; 13(6): 3461-3475, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35781958

RESUMO

Imaging of blood vessel structure in combination with functional information about blood oxygenation can be important in characterizing many different health conditions in which the growth of new vessels contributes to the overall condition. In this paper, we present a method for extracting comprehensive maps of the vasculature from hyperspectral images that include tissue and vascular oxygenation. We also show results from a preclinical study of peritonitis in mice. First, we analyze hyperspectral images using Beer-Lambert exponential attenuation law to obtain maps of hemoglobin species throughout the sample. We then use an automatic segmentation algorithm to extract blood vessels from the hemoglobin map and combine them into a vascular structure-oxygenation map. We apply this methodology to a series of hyperspectral images of the abdominal wall of mice with and without induced peritonitis. Peritonitis is an inflammation of peritoneum that leads, if untreated, to complications such as peritoneal sclerosis and even death. Characteristic inflammatory response can also be accompanied by changes in vasculature, such as neoangiogenesis. We demonstrate a potential application of the proposed segmentation and processing method by introducing an abnormal tissue fraction metric that quantifies the amount of tissue that deviates from the average values of healthy controls. It is shown that the proposed metric successfully discriminates between healthy control subjects and model subjects with induced peritonitis and has a high statistical significance.

14.
Biomed Opt Express ; 13(2): 921-949, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35284194

RESUMO

Analysing diffuse reflectance spectra to extract properties of biological tissue requires modelling of light transport within the tissue, considering its absorption, scattering, and geometrical properties. Due to the layered skin structure, skin tissue models are often divided into multiple layers with their associated optical properties. Typically, in the analysis, some model parameters defining these properties are fixed to values reported in the literature to speed up the fitting process and improve its performance. In the absence of consensus, various studies use different approaches in fixing the model parameters. This study aims to assess the effect of fixing various model parameters in the skin spectra fitting process on the accuracy and robustness of a GPU-accelerated two-layer inverse adding-doubling (IAD) algorithm. Specifically, the performance of the IAD method is determined for noiseless simulated skin spectra, simulated spectra with different levels of noise applied, and in-vivo measured reflectance spectra from hyperspectral images of human hands recorded before, during, and after the arterial occlusion. Our results suggest that fixing multiple parameters to a priori known values generally improves the robustness and accuracy of the IAD algorithm for simulated spectra. However, for in-vivo measured spectra, these values are unknown in advance and fixing optical parameters to incorrect values significantly deteriorates the overall performance. Therefore, we propose a method to improve the fitting performance by pre-estimating model parameters. Our findings could be considered in all future research involving the analysis of diffuse reflectance spectra to extract optical properties of skin tissue.

15.
J Biomed Opt ; 26(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34490762

RESUMO

SIGNIFICANCE: Hyperspectral imaging (HSI) has emerged as a promising optical technique. Besides optical properties of a sample, other sample physical properties also affect the recorded images. They are significantly affected by the sample curvature and sample surface to camera distance. A correction method to reduce the artifacts is necessary to reliably extract sample properties. AIM: Our aim is to correct hyperspectral images using the three-dimensional (3D) surface data and assess how the correction affects the extracted sample properties. APPROACH: We propose the combination of HSI and 3D profilometry to correct the images using the Lambert cosine law. The feasibility of the correction method is presented first on hemispherical tissue phantoms and next on human hands before, during, and after the vascular occlusion test (VOT). RESULTS: Seven different phantoms with known optical properties were created and imaged with a hyperspectral system. The correction method worked up to 60 deg inclination angle, whereas for uncorrected images the maximum angles were 20 deg. Imaging hands before, during, and after VOT shows good agreement between the expected and extracted skin physiological parameters. CONCLUSIONS: The correction method was successfully applied on the images of tissue phantoms of known optical properties and geometry and VOT. The proposed method could be applied to any reflectance optical imaging technique and should be used whenever the sample parameters need to be extracted from a curved surface sample.


Assuntos
Artefatos , Imagem Óptica , Humanos , Imagens de Fantasmas
16.
Sensors (Basel) ; 21(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466275

RESUMO

We have augmented a recently introduced method for noninvasive analysis of skin structure and composition and applied it to monitoring of dynamical processes in traumatic bruises. The approach combines diffuse reflectance spectroscopy in visible spectral range and pulsed photothermal radiometry. Data from both techniques are analyzed simultaneously using a numerical model of light and heat transport in a four-layer model of human skin. Compared to the earlier presented approach, the newly introduced elements include two additional chromophores (ß-carotene and bilirubin), individually adjusted thickness of the papillary dermal layer, and analysis of the bruised site using baseline values assessed from intact skin in its vicinity. Analyses of traumatic bruises in three volunteers over a period of 16 days clearly indicate a gradual, yet substantial increase of the dermal blood content and reduction of its oxygenation level in the first days after injury. This is followed by the emergence of bilirubin and relaxation of all model parameters towards the values characteristic for healthy skin approximately two weeks after the injury. The assessed parameter values and time dependences are consistent with existing literature. Thus, the presented methodology offers a viable approach for objective characterization of the bruise healing process.


Assuntos
Bilirrubina/análise , Contusões/diagnóstico , Contusões/terapia , Terapia Fototérmica , Tratamento por Radiofrequência Pulsada , Radiometria/métodos , Pele/fisiopatologia , Bilirrubina/metabolismo , Contusões/metabolismo , Feminino , Humanos , Masculino , Oxigênio/sangue , Pele/metabolismo , Espectrofotometria , beta Caroteno
17.
Biomed Opt Express ; 11(7): 3753-3768, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33014564

RESUMO

In this work, we revise the preparation procedure and conduct an in depth characterization of optical properties for the recently proposed silicone-based tissue-mimicking optical phantoms in the spectral range from 475 to 925 nm. The optical properties are characterized in terms of refractive index and its temperature dependence, absorption and reduced scattering coefficients and scattering phase function related quantifiers. The scattering phase function and related quantifiers of the optical phantoms are first assessed within the framework of the Mie theory by using the measured refractive index of SiliGlass and size distribution of the hollow silica spherical particles that serve as scatterers. A set of purely absorbing optical phantoms in cuvettes is used to evaluate the linearity of the absorption coefficient with respect to the concentration of black pigment that serves as the absorber. Finally, the optical properties in terms of the absorption and reduced scattering coefficients and the subdiffusive scattering phase function quantifier γ are estimated for a subset of phantoms from spatially resolved reflectance using deep learning aided inverse models. To this end, an optical fiber probe with six linearly arranged optical fibers is used to collect the backscattered light at small and large distances from the source fiber. The underlying light propagation modeling is based on the stochastic Monte Carlo method that accounts for all the details of the optical fiber probe.

18.
Biomed Opt Express ; 11(8): 4275, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32923041

RESUMO

[This corrects the article on p. 3753 in vol. 11.].

19.
Biomed Opt Express ; 11(4): 1991-2006, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32341862

RESUMO

Analysis of morphological changes of the peritoneal membrane is an essential part of animal studies when investigating molecular mechanisms involved in the development of peritoneal fibrosis or testing the effects of potential therapeutic agents. Current methods, such as histology and immunohistochemistry, require time consuming sample processing and analysis and result in limited spatial information. In this paper we present a new method to evaluate structural and chemical changes in an animal model of peritoneal fibrosis that is based on hyperspectral imaging and a model of light transport. The method is able to distinguish between healthy and diseased subjects based on morphological as well as physiological parameters such as blood and scattering parameters. Furthermore, it enables evaluation of changes, such as degree of inflammation and fibrosis, that are closely related to histological findings.

20.
Appl Opt ; 58(32): 9002-9012, 2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31873681

RESUMO

Optical imaging systems use a light source that illuminates a sample and a photodetector that detects light reflected from or transmitted through the sample. The sample surface curvature, surface-to-camera distance, and illumination-source-to-surface distance significantly affect the measured signal, resulting in image artifacts. To correct the images, a three-dimensional (3D) profilometry system was used to obtain 3D surface information. The 3D information enables image correction using Lambert cosine law and height correction. In this study, the feasibility of the correction method for push-broom hyperspectral imaging of three different objects is presented. Results show a significant reduction of image artifacts, making further image analysis more accurate and robust. The presented 3D profilometry method is applicable to all push-broom imaging systems and the described correction procedure can be applied to all spectral or monochromatic imaging systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA