Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exp Hematol ; 85: 33-46.e6, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32417303

RESUMO

Thrombopoietin (THPO) and its receptor myeloproliferative leukemia virus oncogene (MPL) regulate hematopoietic stem cell (HSC) quiescence and maintenance, but also megakaryopoiesis. Thrombocytopenias or aplastic anemias can be treated today with THPO peptide mimetics (romiplostim) or small-molecule THPO receptor agonists (e.g., eltrombopag). These THPO mimetics were designed for human application; however, many preclinical studies are performed in murine models. We investigated the activation of wild-type murine MPL (mMPL) by romiplostim. Romiplostim stimulated AKT, ERK1/2, and STAT5 phosphorylation without preference for one of these pathways, however, with a four- to fivefold lower phosphorylation intensity at high concentration. Faster internalization of mMPL after romiplostim binding could be one explanation of reduced signaling. In vitro megakaryocyte differentiation, proliferation, and maturation by romiplostim was less efficient compared with stimulation with mTHPO. We further dissected mMPL signaling by lentiviral overexpression of mMPL mutants with tyrosine (Y)-to-phenylalanine (F) substitutions in the distal cytoplasmic tyrosines 582 (Y582F), 616 (Y616F), and 621 (Y621F) individually and in combination (Y616F_Y621F) and in truncated receptors lacking 53 (Δ53) or 69 (Δ69) C-terminal amino acids. Mutation at tyrosine residue Y582F caused a gain-of-function with baseline activation and increased ERK1/2 phosphorylation upon stimulation. In agreement with this, proliferation in Y582F-32D cells was increased, yet did not rescue in vitro megakaryopoiesis from Mpl-deficient cells. Y616F and Y621F mutated receptors exhibited strongly impaired ERK1/2 and decreased AKT signaling and conferred reduced proliferation to 32D cells upon mTHPO stimulation but a partial correction of immature megakaryopoiesis in vitro.


Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mutação de Sentido Incorreto , Receptores de Trombopoetina/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Trombopoese/efeitos dos fármacos , Trombopoetina/farmacologia , Substituição de Aminoácidos , Animais , Linhagem Celular , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Knockout , Receptores Fc , Receptores de Trombopoetina/genética , Trombopoese/genética
2.
Anat Histol Embryol ; 49(5): 606-619, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31793053

RESUMO

Every year, influenza viruses spread around the world, infecting the respiratory systems of countless humans and animals, causing illness and even death. Severe influenza infection is associated with pulmonary epithelial damage and endothelial dysfunction leading to acute lung injury (ALI). There is evidence that an aggressive cytokine storm and cell damage in lung capillaries as well as endothelial/platelet interactions contribute to vascular leakage, pro-thrombotic milieu and infiltration of immune effector cells. To date, treatments for ALI caused by influenza are limited to antiviral drugs, active ventilation or further symptomatic treatments. In this review, we summarize the mechanisms of influenza-mediated pathogenesis, permissive animal models and histopathological changes of lung tissue in both mice and men and compare it with histological and electron microscopic data from our own group. We highlight the molecular and cellular interactions between pulmonary endothelium and platelets in homeostasis and influenza-induced pathogenesis. Finally, we discuss novel therapeutic targets on platelets/endothelial interaction to reduce or resolve ALI.


Assuntos
Plaquetas/fisiologia , Endotélio/fisiologia , Influenza Humana/sangue , Infecções por Orthomyxoviridae/veterinária , Orthomyxoviridae/genética , Animais , Plaquetas/metabolismo , Modelos Animais de Doenças , Humanos , Influenza Humana/patologia , Orthomyxoviridae/classificação , Infecções por Orthomyxoviridae/sangue , Infecções por Orthomyxoviridae/patologia , Ativação Plaquetária , Alvéolos Pulmonares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA