Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Pharmaceutics ; 15(12)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38140088

RESUMO

Cannabigerol (CBG), a cannabinoid from Cannabis sativa L., recently attracted noteworthy attention for its dermatological applications, mainly due to its anti-inflammatory, antioxidant, and antimicrobial effectiveness similar to those of cannabidiol (CBD). In this work, based on results from studies of in vitro permeation through biomimetic membranes performed with CBG and CBD in the presence and in the absence of a randomly substituted methyl-ß-cyclodextrin (MßCD), a new CBG extemporaneous emulgel (oil-in-gel emulsion) formulation was developed by spray-drying. The powder (SDE) can be easily reconstituted with purified water, leading to a product with chemical-physical and technological characteristics that are comparable to those of the starting emulgels (E). Thermogravimetric analysis (TGA), attenuated total reflection-Fourier transformed infrared spectroscopy (ATR-FTIR), x-ray powder diffraction (XRPD), and high-performance liquid chromatography (HPLC) analyses demonstrated that the spray-drying treatment did not alter the chemical properties of CBG. This product can represent a metered-dosage form for the localized treatment of cutaneous afflictions such as acne and psoriasis.

2.
Materials (Basel) ; 16(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37629985

RESUMO

Cu-containing hierarchical SAPO-34 catalysts were synthesized by the bottom-up method using different mesoporogen templates: CTAB encapsulated within ordered mesoporous silica nanoparticles (MSNs) and sucrose. A high fraction of the Cu centers exchanged in the hierarchical SAPO-34 architecture with high mesopore surface area and volume was achieved when CTAB was embedded within ordered mesoporous silica nanoparticles. Physicochemical characterization was performed by using structural and spectroscopic techniques to elucidate the properties of hierarchical SAPO-34 before and after Cu introduction. The speciation of the Cu sites, investigated by DR UV-Vis, and the results of the catalytic tests indicated that the synergy between the textural properties of the hierarchical SAPO-34 framework, the high Cu loading, and the coordination and localization of the Cu sites in the hierarchical architecture is the key point to obtaining good preliminary results in the NO selective catalytic reduction with hydrocarbons (HC-SCR).

3.
Materials (Basel) ; 15(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36431482

RESUMO

The synthesis and characterization of novel luminescent amorphous POSS-based polysilsesquioxanes (PSQs) with Tb3+ and Eu3+ ions directly integrated in the polysilsesquioxane matrix is presented. Two different Tb3+/Eu3+ molar ratios were applied, with the aim of disclosing the relationships between the nature and loading of the ions and the luminescence properties. Particular attention was given to the investigation of site geometry and hydration state of the metal centers in the inorganic framework, and of the effect of the Tb3+ → Eu3+ energy transfer on the overall optical properties of the co-doped materials. The obtained materials were characterized by high photostability and colors of the emitted light ranging from orange to deep red, as a function of both the Tb3+/Eu3+ molar ratio and the chosen excitation wavelength. A good energy transfer was observed, with higher efficiency displayed when donor/sensitizer concentration was lower than the acceptor/activator concentration. The easiness of preparation and the possibility to finely tune the photoluminescence properties make these materials valid candidates for several applications, including bioimaging, sensors, ratiometric luminescence-based thermometers, and optical components in inorganic or hybrid light-emitting devices.

4.
Chemistry ; 28(72): e202202771, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302695

RESUMO

A designed N-heterocyclic carbene (NHC) catalyst was covalently anchored on a range of mesoporous and hierarchical supports, to study the influence of pore size in the benzoin condensation of furfural. The structural and spectroscopic characteristics of the anchored catalysts were investigated, also with the help of molecular dynamics simulations, in order to rationalize the degree of stability and recyclability of the heterogenized organocatalysts. Quantitative yields (99 %) and complete recyclability were maintained after several cycles, vindicating the design rationale.


Assuntos
Benzoína , Furaldeído , Benzoína/química , Benzimidazóis , Simulação de Dinâmica Molecular , Catálise
5.
J Phys Chem B ; 126(37): 7166-7171, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36070606

RESUMO

Organic-inorganic hybrid materials find many applications in catalysis, nanotechnology, electronics, and many others. Grafting organic functionalities on inorganic supports is one of the most used methods for their preparation. Toluene is the solvent of choice for the grafting reaction, but it is fossil fuel-derived and not devoid of toxic effects. In this work, we explore the use of sustainable alternatives, i.e., (+)-α-pinene, (-)-ß-pinene, dimethyl carbonate (DMC), (+)-limonene, and 2-methyl-tetrahydrofuran (MeTHF), as solvents for grafting. The grafting reaction between 3-aminopropyltriethoxysilane (APTS) and mesoporous ordered silica (MCM-41) was selected as a model for this study. A comparison of the rate of the grafting reaction in different solvents is reported. The resulting hybrid materials were analyzed by Fourier-transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA) and compared to the reference material prepared in toluene. MeTHF proved to be the best sustainable alternative to toluene for model grafting, providing a comparable product in a significantly shorter reaction time.


Assuntos
Dióxido de Silício , Tolueno , Combustíveis Fósseis , Furanos , Limoneno , Dióxido de Silício/química , Solventes/química , Tolueno/química
6.
NanoImpact ; 28: 100422, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36041682

RESUMO

Potential use of hydroxyapatite nanoparticles (HANPs) [Ca10(PO4)6(OH)2] as slow P-release fertilizer (SRF) has recently attracted wider attention. However, commercially available HANP (with Ca/P ratio = 1.667) is the least soluble calcium phosphate and thus limits its full potential as an SRF in agronomic applications. In this research, we sought to enhance the dissolution rate of HANPs by enriching hydrogen phosphate (HPO42-) species in the phosphate (PO43-) structural sites. Seven different types of pure crystalline HANPs were synthesized at a range of Ca/P ratio from 1.46 (at pH 6.0) to 2.10 (at pH 12.0). Complementary results from FTIR and solid-state 31P MAS NMR spectroscopies showed that HPO42- species is most abundant in HANPs crystallized at pH 6.0 and gradually depleted at higher pH products. The rate of depletion of HPO42- species is proportional to the increase in carbonate incorporation into the HANP lattice, which preferentially forms B-type carbonated HANPs. The enhanced dissolution rate of HANPs due to hydrogen phosphate incorporation was tested using a flow-through macro-dialysis system that limits the partial transition of HANPs to other solid phases, which otherwise interfere with dissolution. The results show that the dissolution rate of HANPs increased with decreasing pH of synthesis and was highest in HANPs at pH 6.0. The dissolution rate differed by ten times between HANPs synthesized at pH 7.0 and 10.0. Overall, the atom-efficient synthetic route developed and the ability to tune the dissolution rate of HANPs are significant steps forward in improving the P-release efficiency of a potent SRF and is expected to contribute to efforts toward enhancing agricultural sustainability.


Assuntos
Apatitas , Fosfatos , Hidrogênio
7.
Int J Mol Sci ; 23(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35805956

RESUMO

Upconversion (UC) nanoparticles characterized by red upconversion emission, particularly interesting for biological applications, have been prepared and subsequently modified by the covalent anchoring of Verteporfin (Ver), an FDA approved photosensitizer (PS) which usually exerts its photodynamic activity upon excitation with red light. ZrO2 was chosen as the platform where Yb3+ and Er3+ were inserted as the sensitizer and activator ions, respectively. Careful control of the doping ratio, along with a detailed physico-chemical characterization, was carried out. Upon functionalization with a silica shell to covalently anchor the photosensitizer, a theranostic nanoparticle was obtained whose architecture, thanks to a favorable energy level match and a uniform distribution of the PS, allowed us to trigger the photodynamic activity of Ver by upconversion, thus paving the way to the use of Photodynamic Therapy (PDT) in deep tissues, thanks to the higher penetrating power of NIR light.


Assuntos
Nanopartículas , Fotoquimioterapia , Nanopartículas/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Dióxido de Silício/química , Verteporfina/uso terapêutico
8.
ACS Med Chem Lett ; 13(5): 807-811, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35586438

RESUMO

A recently developed synthetic protocol allowed for the functionalization of the active peptide A9 with a fluorogenic probe, which is useful for studying biomolecular interactions. Essentially, a nucleophilic attack on a halo-substituted benzofurazan is selectively performed by a cysteine sulfhydryl group. The process is assisted by the basic catalysis of activated zeolites (4 Å molecular sieves) and promoted by microwave irradiation. Fluorescence studies revealed that a donor-acceptor pair within the peptide sequence was introduced, thus allowing a deeper investigation on the interaction process between the peptide ligand and its receptor fragment. The obtained results allowed us to come full circle for all the currently understood structural determinants that were found to be involved in the binding process.

9.
Biomedicines ; 10(2)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35203545

RESUMO

Human mesenchymal stem cell (hMSC)-based therapy is an emerging resource in regenerative medicine. Despite the innate ability of hMSCs to migrate to sites of injury, homing of infused hMSCs to the target tissue is inefficient. It was shown that silica nanoparticles (SiO2-NPs), previously developed to track the stem cells after transplantation, accumulated in lysosomes leading to a transient blockage of the autophagic flux. Since CXCR4 turnover is mainly regulated by autophagy, we tested the effect of SiO2-NPs on chemotactic migration of hMSCs along the SDF1α/CXCR4 axis that plays a pivotal role in directing MSC homing to sites of injury. Our results showed that SiO2-NP internalization augmented CXCR4 surface levels. We demonstrated that SiO2-NP-dependent CXCR4 increase was transient, and it reversed at the same time as lysosomal compartment normalization. Furthermore, the autophagy inhibitor Bafilomycin-A1 reproduced CXCR4 overexpression in control hMSCs confirming the direct effect of the autophagic degradation blockage on CXCR4 expression. Chemotaxis assays showed that SiO2-NPs increased hMSC migration toward SDF1α. In contrast, migration improvement was not observed in TNFα/TNFR axis, due to the proteasome-dependent TNFR regulation. Overall, our findings demonstrated that SiO2-NP internalization increases the chemotactic behaviour of hMSCs acting on the SDF1α/CXCR4 axis, unmasking a high potential to improve hMSC migration to sites of injury and therapeutic efficacy upon cell injection in vivo.

10.
Int J Mol Sci ; 22(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34948239

RESUMO

Photodynamic therapy (PDT) has been pointed out as a candidate for improving melanoma treatment. Nanotechnology application in PDT has increased its efficacy by reducing side effects. Herein, mesoporous silica nanoparticles (MSNs) conjugated with verteporfin (Ver-MSNs), in use with PDT, were administered in mice to evaluate their efficacy on lymphoangiogenesis and micrometastasis in melanoma. Melanoma was induced in mice by the subcutaneous injection of B16-F10 cells. The mice were transcutaneously treated with MSNs, Ver-MSNs, or glycerol and exposed to red light. The treatment was carried out four times until day 20. Lymphangiogenesis and micrometastasis were identified by the immunohistochemical method. Lymphoangiogenesis was halved by MSN treatment compared with the control animals, whereas the Ver-MSN treatment almost abolished it. A similar reduction was also observed in lung micrometastasis. PDT with topically administrated Ver-MSNs reduced melanoma lymphoangiogenesis and lung micrometastasis, as well as tumor mass and angiogenesis, and therefore their use could be an innovative and useful tool in melanoma clinical therapy.


Assuntos
Linfangiogênese/efeitos dos fármacos , Melanoma Experimental , Nanopartículas , Dióxido de Silício , Verteporfina , Administração Tópica , Animais , Feminino , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Nanopartículas/química , Nanopartículas/uso terapêutico , Metástase Neoplásica , Porosidade , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Verteporfina/química , Verteporfina/farmacologia
11.
ChemistryOpen ; 10(12): 1251-1259, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34907672

RESUMO

The synthesis and characterization of amino-functionalized mesoporous silica nanoparticles are presented following two different synthetic methods: co-condensation and post-synthesis grafting of 3-aminopropyltriethoxysilane. The amino groups' distribution on the mesoporous silica nanoparticles was evaluated considering the aggregation state of a grafted photosensitizer (Verteporfin) by using spectroscopic techniques. The homogeneous distribution of amino groups within the silica network is a key factor to avoid aggregation during further organic functionalization and to optimize the performance of functionalized silica nanoparticles in biomedical applications. In addition, the formation of a protein corona on the external surface of both bare and amino-functionalized mesoporous silica was also investigated by adsorbing Bovine Serum Albumin (BSA) as a model protein. The adsorption of BSA was found to be favorable, reducing the aggregation phenomena for both bare and amino-modified nanoparticles. Nevertheless, the dispersant effect of BSA was much more evident in the case of amino-modified nanoparticles, which reached monodispersion after adsorption of the protein, thus suggesting that amino-modified nanoparticles can benefit from protein corona formation for preventing severe aggregation in biological media.


Assuntos
Nanopartículas , Dióxido de Silício , Adsorção , Soroalbumina Bovina
12.
J Phys Chem C Nanomater Interfaces ; 125(38): 21199-21210, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34621460

RESUMO

Hybrid catalysts are attracting much attention, since they combine the versatility and efficiency of homogeneous organic catalysis with the robustness and thermal stability of solid materials, for example, mesoporous silica; in addition, they can be used in cascade reactions, for exploring both organic and inorganic catalysis at the same time. Despite the importance of the organic/inorganic interface in these materials, the effect of the grafting architecture on the final conformation of the organic layer (and hence its reactivity) is still largely unexplored. Here, we investigate a series of organosiloxanes comprising a pyridine ring (the catalyst model) and different numbers of alkylsiloxane chains used to anchor it to the MCM-41 surface. The hybrid interfaces are characterized with X-ray powder diffraction, thermogravimetric analyses, Fourier-transform infrared spectroscopy, nuclear magnetic resonance techniques and are modeled theoretically through molecular dynamics (MD) simulations, to determine the relationship between the number of chains and the average position of the pyridine group; MD simulations also provide some insights about temperature and solvent effects.

13.
Materials (Basel) ; 14(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34683794

RESUMO

Pharmaceutical active compounds, including hundreds of different substances, are counted among the emerging contaminants in waterbodies, whose presence raises a growing concern for the ecosystem. Drugs are metabolized and excreted mainly through urine as an unchanged active ingredient or in the form of metabolites. These emerging contaminants are not effectively removed with the technologies currently in use, making them a relevant environmental problem. This study proposes the treatment of urine and water at the source that can allow an easier removal of dissolved drugs and metabolites. The treatment of synthetic urine, with dissolved ibuprofen as a model compound, by adsorption, using various classes of inorganic materials, such as clays, hierarchical zeolites and ordered mesoporous silica (MCM-41), is presented. A multi-technique approach involving X-ray powder diffraction, solid-state NMR, UV-Vis and Raman spectroscopies was employed to investigate the adsorption process in inorganic adsorbents. Moreover, the uptake, the ensuing competition, the efficiency and selectivity as well as the packing of the model compound in ordered mesoporous silica during the incipient wetness impregnation process were all thoroughly monitored by a novel approach, involving combined complementary time-resolved in situ 1H and 13C MAS NMR spectroscopy as well as X-ray powder diffraction.

14.
Angew Chem Int Ed Engl ; 59(44): 19561-19569, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-32648629

RESUMO

Porosity and acidity are influential properties in the rational design of solid-acid catalysts. Probing the physicochemical characteristics of an acidic zeotype framework at the molecular level can provide valuable insights in understanding intrinsic reaction pathways, for affording structure-activity relationships. Herein, we employ a variety of probe-based techniques (including positron annihilation lifetime spectroscopy (PALS), FTIR and solid-state NMR spectroscopy) to demonstrate how a hierarchical design strategy for a faujasitic (FAU) zeotype (synthesized for the first time, via a soft-templating approach, with high phase-purity) can be used to simultaneously modify the porosity and modulate the acidity for an industrially significant catalytic process (Beckmann rearrangement). Detailed characterization of hierarchically porous (HP) SAPO-37 reveals enhanced mass-transport characteristics and moderated acidity, which leads to superior catalytic performance and increased resistance to deactivation by coking, compared to its microporous counterpart, further vindicating the interplay between porosity and moderated acidity.

15.
Chemistry ; 26(60): 13606-13610, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32452589

RESUMO

The grafting of imidazole species onto coordinatively unsaturated sites within metal-organic framework MIL-101(Cr) enables enhanced CO2 capture in close proximity to catalytic sites. The subsequent combination of CO2 and epoxide binding sites, as shown through theoretical findings, significantly improves the rate of cyclic carbonate formation, producing a highly active CO2 utilization catalyst. An array of spectroscopic investigations, in combination with theoretical calculations reveal the nature of the active sites and associated catalytic mechanism which validates the careful design of the hybrid MIL-101(Cr).

16.
RSC Adv ; 10(63): 38578-38582, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35517570

RESUMO

A smart design of hierarchical SAPO-5 acid catalyst using biomass derived monosaccharides as sustainable and low-cost mesoporogens has been developed. The hierarchical SAPO-5 was characterized by several physico-chemical techniques to elucidate structure-properties relationships and was tested as a catalyst in the MW-assisted glucose transformation in 5-HMF using γ-valerolactone (GVL) as green solvent.

17.
Nanomaterials (Basel) ; 9(11)2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31698869

RESUMO

Tumor-targeted drug-loaded nanocarriers represent innovative and attractive tools for cancer therapy. Several magnetic nanoparticles (MNPs) were analyzed as potential tumor-targeted drug-loaded nanocarriers after functionalization with anti-Met oncogene (anti-Met/HGFR) monoclonal antibody (mAb) and doxorubicin (DOXO). Their cytocompatibility, stability, immunocompetence (immunoprecipitation), and their interactions with cancer cells in vitro (Perl's staining, confocal microscopy, cytotoxic assays: MTT, real time toxicity) and with tumors in vivo (Perl's staining) were evaluated. The simplest silica- and calcium-free mAb-loaded MNPs were the most cytocompatible, the most stable, and showed the best immunocompetence and specificity. These mAb-functionalized MNPs specifically interacted with the surface of Met/HGFR-positive cells, and not with Met/HGFR-negative cells; they were not internalized, but they discharged in the targeted cells DOXO, which reached the nucleus, exerting cytotoxicity. The presence of mAbs on DOXO-MNPs significantly increased their cytotoxicity on Met/HGFR-positive cells, while no such effect was detectable on Met/HGFR-negative cells. Bare MNPs were biocompatible in vivo; mAb presence on MNPs induced a better dispersion within the tumor mass when injected in situ in Met/HGFR-positive xenotumors in NOD/SCID-γnull mice. These MNPs may represent a new and promising carrier for in vivo targeted drug delivery, in which applied gradient and alternating magnetic fields can enhance targeting and induce hyperthermia respectively.

18.
J Photochem Photobiol B ; 197: 111533, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31254952

RESUMO

Melanoma is one of the most lethal tumors among the skin cancers, arising from complex genetic mutations in melanocyte. Melanoma microenvironment is very heterogeneous, showing complex vascular networks and immunogenicity, as well as induced acquired resistance to treatments by upregulation of multidrug resistance (MDR) mechanisms. Different studies have showed that Photodynamic Therapy (PDT) could be considered a new potential approach for melanoma treatment. PDT combines a light with a specific wavelength and a photosensitizer: when these two elements interact reactive oxygen species (ROS) are generated leading to tumor cell destruction. In this study verteporfin (Ver), a second-generation photosensitizer, has been conjugated with mesoporous silica nanoparticles (MSNs): the resulting Ver-MSNs are an efficient nanoplatforms used to enhance cargo capacity and cellular uptake. Our in vitro and in vivo studies investigated whether Ver-MSNs were able to reduce or inhibit melanoma growth. In vitro experiments performed using B16F10 mouse melanoma cells showed that Ver-MSNs stimulated by red light (693 nm) significantly decreased in vitro cells proliferation in a range of concentration between 0.1 µg/ml to 10 µg/ml. When Ver-MSNs (5 µg/ml in glycerol) were topically administrated to melanoma tumor mass developed in mice and stimulated by red light for four times in 16 days, they were able to reduce the tumor mass of 50.2 ±â€¯6,6% compared to the untreated (only glycerol) mice. In the light of this information, PDT performed using Ver-MSNs could be considered a new promising and potential approach to treat melanoma.


Assuntos
Melanoma Experimental/tratamento farmacológico , Nanopartículas Metálicas/química , Dióxido de Silício/química , Verteporfina/química , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química , Feminino , Luz , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Porosidade , Espécies Reativas de Oxigênio/metabolismo , Verteporfina/uso terapêutico
19.
Chemistry ; 25(42): 9938-9947, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31033059

RESUMO

Soft templating with siliceous surfactant is an established protocol for the synthesis of hierarchically porous silicoaluminophosphates (HP SAPOs) with improved mass transport properties. Motivated by the enhanced performance of HP SAPOs in the Beckmann rearrangement of cyclohexanone oxime to the nylon 6 precursor ϵ-caprolactam, an integrated theoretical and empirical study was carried out to investigate the catalytic potential of the siliceous mesopore network. Inelastic neutron scattering (INS) studies, in particular, provided unique insight into the substrate-framework interactions in HP (Si)AlPOs and allowed reactive species to be studied independent of the catalyst matrix. The spectroscopic (INS, FTIR spectroscopy, MAS NMR spectroscopy) and computational analyses revealed that in the organosilane-templated SAPO, the interconnectivity of micro- and mesopores permits cooperativity between their respective silanol and Brønsted acid sites that facilitates the protonation of cyclohexanone oxime in a physical mixture at ambient temperature.

20.
Molecules ; 24(5)2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823360

RESUMO

The organic⁻inorganic hybrid materials have attracted great attention due to their improved or unusual properties that open promising applications in different areas such as optics, electronics, energy, environment, biology, medicine and heterogeneous catalysis. Different types of silicodactyl platforms grafted on silica inorganic supports can be used to synthesize hybrid materials. A careful evaluation of the dactyly of the organic precursors, normally alkoxysilanes, and of the type of interaction with the inorganic supports is presented. In fact, depending on the hydrophilicity of the silica surface (e.g., number and density of surface silanols) as well as on the grafting conditions, the hydrolysis and condensation reaction of the silylated moieties can involve only one or two out of three alkoxysilane groups. The influence of silicodactyly in the preparation of organic-inorganic silica-based hybrids is studied by TGA, 29Si, ¹H and 13C solid-state NMR and FTIR spectroscopies, with the support of Molecular Dynamics calculations. Computational studies are used to forecast the influence of the different grafting configurations on the tendency of the silane to stick on the inorganic surface.


Assuntos
Simulação de Dinâmica Molecular , Silanos/química , Dióxido de Silício/química , Espectroscopia de Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA