Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34016748

RESUMO

Fungi produce a wealth of pharmacologically bioactive secondary metabolites (SMs) from biosynthetic gene clusters (BGCs). It is common practice for drug discovery efforts to treat species' secondary metabolomes as being well represented by a single or a small number of representative genomes. However, this approach misses the possibility that intraspecific population dynamics, such as adaptation to environmental conditions or local microbiomes, may harbor novel BGCs that contribute to the overall niche breadth of species. Using 94 isolates of Aspergillus flavus, a cosmopolitan model fungus, sampled from seven states in the United States, we dereplicate 7,821 BGCs into 92 unique BGCs. We find that more than 25% of pangenomic BGCs show population-specific patterns of presence/absence or protein divergence. Population-specific BGCs make up most of the accessory-genome BGCs, suggesting that different ecological forces that maintain accessory genomes may be partially mediated by population-specific differences in secondary metabolism. We use ultra-high-performance high-resolution mass spectrometry to confirm that these genetic differences in BGCs also result in chemotypic differences in SM production in different populations, which could mediate ecological interactions and be acted on by selection. Thus, our results suggest a paradigm shift that previously unrealized population-level reservoirs of SM diversity may be of significant evolutionary, ecological, and pharmacological importance. Last, we find that several population-specific BGCs from A. flavus are present in Aspergillus parasiticus and Aspergillus minisclerotigenes and discuss how the microevolutionary patterns we uncover inform macroevolutionary inferences and help to align fungal secondary metabolism with existing evolutionary theory.


Assuntos
Aspergillus flavus/metabolismo , Aspergillus/metabolismo , Genoma Fúngico , Metaboloma , Metabolismo Secundário/genética , Aspergillus/classificação , Aspergillus/genética , Aspergillus flavus/classificação , Aspergillus flavus/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Especiação Genética , Genômica , Metagenômica , Família Multigênica , Filogenia , Estados Unidos
2.
Phytopathology ; 111(1): 149-159, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33079020

RESUMO

Verticillium dahliae is a soilborne fungal pathogen affecting many economically important crops that can also infect weeds and rotational crops with no apparent disease symptoms. The main research goal was to test the hypothesis that V. dahliae populations recovered from asymptomatic rotational crops and weed species are evolutionarily and genetically distinct from symptomatic hosts. We collected V. dahliae isolates from symptomatic and asymptomatic hosts growing in fields with histories of Verticillium wilt of potato in Israel and Pennsylvania (United States), and used genotyping-by-sequencing to analyze the evolutionary history and genetic differentiation between populations of different hosts. A phylogeny inferred from 26,934 single-nucleotide polymorphisms (SNPs) in 126 V. dahliae isolates displayed a highly clonal structure correlated with vegetative compatibility groups, and isolates grouped in lineages 2A, 2B824, 4A, and 4B, with 77% of the isolates in lineage 4B. The lineages identified in this study were differentiated by host of origin; we found 2A, 2B824, and 4A only in symptomatic hosts but isolates from asymptomatic hosts (weeds, oat, and sorghum) grouped exclusively within lineage 4B, and were genetically indistinguishable from 4B isolates sampled from symptomatic hosts (potato, eggplant, and avocado). Using coalescent analysis of 158 SNPs of lineage 4B, we inferred a genealogy with clades that correlated with geographic origin. In contrast, isolates from asymptomatic and symptomatic hosts shared some of the same haplotypes and were not differentiated. We conclude that asymptomatic weeds and rotational hosts may be potential reservoirs for V. dahliae populations of lineage 4B, which are pathogenic to many cultivated hosts.


Assuntos
Verticillium , Ascomicetos , Israel , Pennsylvania , Doenças das Plantas , Verticillium/genética
3.
mBio ; 11(4)2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665272

RESUMO

The apparent rarity of sex in many fungal species has raised questions about how much sex is needed to purge deleterious mutations and how differences in frequency of sex impact fungal evolution. We sought to determine how differences in the extent of recombination between populations of Aspergillus flavus impact the evolution of genes associated with the synthesis of aflatoxin, a notoriously potent carcinogen. We sequenced the genomes of, and quantified aflatoxin production in, 94 isolates of A. flavus sampled from seven states in eastern and central latitudinal transects of the United States. The overall population is subdivided into three genetically differentiated populations (A, B, and C) that differ greatly in their extent of recombination, diversity, and aflatoxin-producing ability. Estimates of the number of recombination events and linkage disequilibrium decay suggest relatively frequent sex only in population A. Population B is sympatric with population A but produces significantly less aflatoxin and is the only population where the inability of nonaflatoxigenic isolates to produce aflatoxin was explained by multiple gene deletions. Population expansion evident in population B suggests a recent introduction or range expansion. Population C is largely nonaflatoxigenic and restricted mainly to northern sampling locations through restricted migration and/or selection. Despite differences in the number and type of mutations in the aflatoxin gene cluster, codon optimization and site frequency differences in synonymous and nonsynonymous mutations suggest that low levels of recombination in some A. flavus populations are sufficient to purge deleterious mutations.IMPORTANCE Differences in the relative frequencies of sexual and asexual reproduction have profound implications for the accumulation of deleterious mutations (Muller's ratchet), but little is known about how these differences impact the evolution of ecologically important phenotypes. Aspergillus flavus is the main producer of aflatoxin, a notoriously potent carcinogen that often contaminates food. We investigated if differences in the levels of production of aflatoxin by A. flavus could be explained by the accumulation of deleterious mutations due to a lack of recombination. Despite differences in the extent of recombination, variation in aflatoxin production is better explained by the demography and history of specific populations and may suggest important differences in the ecological roles of aflatoxin among populations. Furthermore, the association of aflatoxin production and populations provides a means of predicting the risk of aflatoxin contamination by determining the frequencies of isolates from low- and high-production populations.


Assuntos
Aflatoxinas/biossíntese , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Metagenômica , Recombinação Genética , Aspergillus flavus/classificação , DNA Fúngico/genética , Variação Genética , Desequilíbrio de Ligação , Família Multigênica , Mutação , Análise de Sequência de DNA
4.
Phytopathology ; 110(6): 1180-1188, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32207662

RESUMO

Cryphonectria parasitica is the causal agent of chestnut blight, a fungal disease that almost entirely eliminated mature American chestnut from North America over a 50-year period. Here, we formally report the genome of C. parasitica EP155 using a Sanger shotgun sequencing approach. After finishing and integration with simple-sequence repeat markers, the assembly was 43.8 Mb in 26 scaffolds (L50 = 5; N50 = 4.0Mb). Eight chromosomes are predicted: five scaffolds have two telomeres and six scaffolds have one telomere sequence. In total, 11,609 gene models were predicted, of which 85% show similarities to other proteins. This genome resource has already increased the utility of a fundamental plant pathogen experimental system through new understanding of the fungal vegetative incompatibility system, with significant implications for enhancing mycovirus-based biological control.


Assuntos
Ascomicetos , Fagaceae , Micovírus , América do Norte , Doenças das Plantas
5.
mBio ; 10(1)2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30782658

RESUMO

Selective forces that maintain the polymorphism for aflatoxigenic and nonaflatoxigenic individuals of Aspergillus flavus are largely unknown. As soils are widely considered the natural habitat of A. flavus, we hypothesized that aflatoxin production would confer a fitness advantage in the soil environment. To test this hypothesis, we used A. flavus DNA quantified by quantitative PCR (qPCR) as a proxy for fitness of aflatoxigenic and nonaflatoxigenic field isolates grown in soil microcosms. Contrary to predictions, aflatoxigenic isolates had significantly lower fitness than did nonaflatoxigenic isolates in natural soils across three temperatures (25, 37, and 42°C). The addition of aflatoxin to soils (500 ng/g) had no effect on the growth of A. flavus Amplicon sequencing showed that neither the aflatoxin-producing ability of the fungus nor the addition of aflatoxin had a significant effect on the composition of fungal or bacterial communities in soil. We argue that the fitness disadvantage of aflatoxigenic isolates is most likely explained by the metabolic cost of producing aflatoxin. Coupled with a previous report of a selective advantage of aflatoxin production in the presence of some insects, our findings give an ecological explanation for balancing selection resulting in persistent polymorphisms in aflatoxin production.IMPORTANCE Aflatoxin, produced by the fungus Aspergillus flavus, is an extremely potent hepatotoxin that causes acute toxicosis and cancer, and it incurs hundreds of millions of dollars annually in agricultural losses. Despite the importance of this toxin to humans, it has remained unclear what the fungus gains by producing aflatoxin. In fact, not all strains of A. flavus produce aflatoxin. Previous work has shown an advantage to producing aflatoxin in the presence of some insects. Our current work demonstrates the first evidence of a disadvantage to A. flavus in producing aflatoxin when competing with soil microbes. Together, these opposing evolutionary forces could explain the persistence of both aflatoxigenic and nonaflatoxigenic strains through evolutionary time.


Assuntos
Aflatoxinas/metabolismo , Antibiose , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismo , Metabolismo Energético , Venenos/metabolismo , Microbiologia do Solo , Bactérias/crescimento & desenvolvimento , DNA Fúngico/análise , DNA Fúngico/genética , Aptidão Genética , Genética Populacional , Reação em Cadeia da Polimerase em Tempo Real , Temperatura
6.
Phytopathology ; 109(5): 878-886, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30480472

RESUMO

Consumption of food contaminated with aflatoxin, from crops infected by Aspergillus flavus, is associated with acute toxicosis, cancer, and stunted growth. Although such contamination is more common in the lower latitudes of the United States, it is unclear whether this pattern is associated with differences in the relative frequencies of aflatoxigenic individuals of A. flavus. To determine whether the frequency of the aflatoxin-producing ability of A. flavus increases as latitude decreases, we sampled 281 isolates from field soils in two north-south transects in the United States and tested them for aflatoxin production. We also genotyped 161 isolates using 10 microsatellite markers to assess population structure. Although the population density of A. flavus was highest at lower latitudes, there was no difference in the frequency of aflatoxigenic A. flavus isolates in relation to latitude. We found that the U.S. population of A. flavus is subdivided into two genetically differentiated subpopulations that are not associated with the chemotype or geographic origin of the isolates. The two populations differ markedly in allelic and genotypic diversity. The less diverse population is more abundant and may represent a clonal lineage derived from the more diverse population. Overall, increased aflatoxin contamination in lower latitudes may be explained partially by differences in the population density of A. flavus, not genetic population structure.


Assuntos
Aflatoxinas , Aspergillus flavus/genética , Genética Populacional , Genótipo , Repetições de Microssatélites , Doenças das Plantas/microbiologia , Estados Unidos
7.
Heredity (Edinb) ; 121(6): 511-523, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29426879

RESUMO

Balancing selection has been inferred in diverse organisms for nonself recognition genes, including those involved in immunity, mating compatibility, and vegetative incompatibility. Although selective forces maintaining polymorphisms are known for genes involved in immunity and mating, mechanisms of balancing selection for vegetative incompatibility genes in fungi are being debated. We hypothesized that allorecognition and its consequent inhibition of virus transmission contribute to the maintenance of polymorphisms in vegetative incompatibility loci (vic) in the chestnut blight fungus, Cryphonectria parasitica. Balancing selection was demonstrated at two loci, vic2 and vic6, by trans-species polymorphisms in C. parasitica, C. radicalis, and C. japonica and signatures of positive selection in gene sequences. In addition, more than half (31 of 54) of allele frequency estimates at six vic loci in nine field populations of C. parasitica from Asia and the eastern US were not significantly different from 0.5, as expected at equilibrium for two alleles per locus under balancing selection. At three vic loci, deviations from 0.5 were predicted based on the effects of heteroallelism on virus transmission. Twenty-five of 27 allele frequency estimates were greater than or equal to 0.5 for the allele that confers significantly stronger inhibition of virus transmission at three loci with asymmetric transmission. These results are consistent with the allorecognition hypothesis that vegetative incompatibility genes are under selection because of their role in reducing infection by viruses.


Assuntos
Frequência do Gene , Polimorfismo Genético , Saccharomycetales/genética , Seleção Genética , Saccharomycetales/classificação , Especificidade da Espécie
8.
Phytopathology ; 108(6): 780-788, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29318912

RESUMO

Verticillium dahliae is a plant pathogenic fungus that reproduces asexually and its population structure is highly clonal. In the present study, 78 V. dahliae isolates from Iran were genotyped for mating type, single nucleotide polymorphisms (SNPs), and microsatellites to assign them to clonal lineages and to determine population genetic structure in Iran. The mating type of all isolates was MAT1-2. Based on neighbor-joining analysis and minimum spanning networks constructed from SNPs and microsatellite genotypes, respectively, all but four isolates were assigned to lineage 2B824; four isolates were assigned to lineage 4B. The inferred coalescent genealogy of isolates in lineage 2B824 showed a clear divergence into two clades that corresponded to geographic origin and host. Haplotypes of cotton and pistachio isolates sampled from central Iran were in one clade, and those of isolates from Prunus spp. sampled from northwestern Iran were in the other. The strong divergence in haplotypes between the two clades suggests that there were at least two separate introductions of lineage 2B824 to different parts of Iran. Given the history of cotton and pistachio cultivation and Verticillium wilt in Iran, these results are consistent with the hypothesis that cotton was historically a likely source inoculum causing Verticillium wilt in pistachio.


Assuntos
DNA Fúngico/genética , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único/genética , Verticillium/genética , Irã (Geográfico)
9.
Proc Biol Sci ; 284(1869)2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29263278

RESUMO

The role of microbial secondary metabolites in the ecology of the organisms that produce them remains poorly understood. Variation in aflatoxin production by Aspergillus flavus is maintained by balancing selection, but the ecological function and impact on fungal fitness of this compound are unknown. We hypothesize that balancing selection for aflatoxin production in A. flavus is driven by interaction with insects. To test this, we competed naturally occurring aflatoxigenic and non-aflatoxigenic fungal isolates against Drosophila larvae on medium containing 0-1750 ppb aflatoxin, using quantitative PCR to quantify A. flavus DNA as a proxy for fungal fitness. The addition of aflatoxin across this range resulted in a 26-fold increase in fungal fitness. With no added toxin, aflatoxigenic isolates caused higher mortality of Drosophila larvae and had slightly higher fitness than non-aflatoxigenic isolates. Additionally, aflatoxin production increased an average of 1.5-fold in the presence of a single larva and nearly threefold when the fungus was mechanically damaged. We argue that the role of aflatoxin in protection from fungivory is inextricably linked to its role in interference competition. Our results, to our knowledge, provide the first clear evidence of a fitness advantage conferred to A. flavus by aflatoxin when interacting with insects.


Assuntos
Aflatoxinas/metabolismo , Aspergillus flavus/química , Aspergillus flavus/genética , Drosophila melanogaster/fisiologia , Herbivoria , Seleção Genética , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Microbiologia de Alimentos , Larva/crescimento & desenvolvimento , Larva/fisiologia
10.
Annu Rev Phytopathol ; 54: 323-46, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27296138

RESUMO

We are entering a new era in plant pathology in which whole-genome sequences of many individuals of a pathogen species are becoming readily available. Population genomics aims to discover genetic mechanisms underlying phenotypes associated with adaptive traits such as pathogenicity, virulence, fungicide resistance, and host specialization, as genome sequences or large numbers of single nucleotide polymorphisms become readily available from multiple individuals of the same species. This emerging field encompasses detailed genetic analyses of natural populations, comparative genomic analyses of closely related species, identification of genes under selection, and linkage analyses involving association studies in natural populations or segregating populations resulting from crosses. The era of pathogen population genomics will provide new opportunities and challenges, requiring new computational and analytical tools. This review focuses on conceptual and methodological issues as well as the approaches to answering questions in population genomics. The major steps start with defining relevant biological and evolutionary questions, followed by sampling, genotyping, and phenotyping, and ending in analytical methods and interpretations. We provide examples of recent applications of population genomics to fungal and oomycete plant pathogens.


Assuntos
Fungos/genética , Genoma Fúngico , Genômica , Oomicetos/genética , Plantas/microbiologia , Fungos/fisiologia , Oomicetos/fisiologia , Doenças das Plantas/microbiologia
11.
Phytopathology ; 106(9): 1038-46, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27050569

RESUMO

We used a population genomics approach to test the hypothesis of clonal expansion of a highly fit genotype in populations of Verticillium dahliae. This fungal pathogen has a broad host range and can be dispersed in contaminated seed or other plant material. It has a highly clonal population structure, with several lineages having nearly worldwide distributions in agricultural crops. Isolates in lineage 1A are highly virulent and cause defoliation in cotton, okra, and olive (denoted 1A/D), whereas those in other lineages cause wilting but not defoliation (ND). We tested whether the highly virulent lineage 1A/D could have spread from the southwestern United States to the Mediterranean basin, as predicted from historical records. We found 187 single-nucleotide polymorphisms (SNPs), determined by genotyping by sequencing, among 91 isolates of lineage 1A/D and 5 isolates in the closely related lineage 1B/ND. Neighbor-joining and maximum-likelihood analyses on the 187 SNPs showed a clear divergence between 1A/D and 1B/ND haplotypes. Data for only 77 SNPs were obtained for all 96 isolates (no missing data); lineages 1A/D and 1B/ND differed by 27 of these 77 SNPs, confirming a clear divergence between the two lineages. No evidence of recombination was detected within or between these two lineages. Phylogenetic and genealogical analyses resulted in five distinct subclades of 1A/D isolates that correlated closely with geographic origins in the Mediterranean basin, consistent with the hypothesis that the D pathotype was introduced at least five times in independent founder events into this region from a relatively diverse source population. The inferred ancestral haplotype was found in two isolates sampled before 1983 from the southwestern United States, which is consistent with historical records that 1A/D originated in North America. The five subclades coalesce with the ancestral haplotype at the same time, consistent with a hypothesis of rapid population expansion in the source population during the emergence of 1A/D as a severe pathogen of cotton in the United States.


Assuntos
Abelmoschus/microbiologia , Variação Genética , Gossypium/microbiologia , Olea/microbiologia , Doenças das Plantas/microbiologia , Verticillium/genética , Produtos Agrícolas , Genética Populacional , Genômica , Genótipo , Grécia , Haplótipos , Especificidade de Hospedeiro , Israel , Polimorfismo de Nucleotídeo Único/genética , Espanha , Turquia , Estados Unidos , Verticillium/isolamento & purificação , Verticillium/patogenicidade
12.
J Gen Virol ; 97(6): 1453-1457, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26916424

RESUMO

The satellite RNAs of cucumber mosaic virus (CMV) that induce systemic necrosis in tomato plants (N-satRNA) multiply to high levels in the infected host while severely depressing CMV accumulation and, hence, its aphid transmission efficiency. As N-satRNAs are transmitted into CMV particles, the conditions for N-satRNA emergence are not obvious. Model analyses with realistic parameter values have predicted that N-satRNAs would invade CMV populations only when transmission rates are high. Here, we tested this hypothesis experimentally by passaging CMV or CMV+N-satRNAs at low or high aphid densities (2 or 8 aphids/plant). As predicted, high aphid densities were required for N-satRNA emergence. The results showed that at low aphid densities, random effects due to population bottlenecks during transmission dominate the epidemiological dynamics of CMV/CMV+N-satRNA. The results suggest that maintaining aphid populations at low density will prevent the emergence of highly virulent CMV+N-satRNA isolates.


Assuntos
Afídeos/crescimento & desenvolvimento , Afídeos/virologia , Cucumovirus/crescimento & desenvolvimento , Insetos Vetores , RNA Satélite/metabolismo , Animais , Solanum lycopersicum/virologia , Doenças das Plantas/virologia , Densidade Demográfica
13.
Phytopathology ; 105(3): 370-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25271353

RESUMO

We studied the mechanisms of azole resistance in Erysiphe necator by quantifying the sensitivity to myclobutanil (EC50) in 65 isolates from the eastern United States and 12 from Chile. From each isolate, we sequenced the gene for sterol 14α-demethylase (CYP51), and measured the expression of CYP51 and homologs of four putative efflux transporter genes, which we identified in the E. necator transcriptome. Sequence variation in CYP51 was relatively low, with sequences of 40 U.S. isolates identical to the reference sequence. Nine U.S. isolates and five from Chile carried a previously identified A to T nucleotide substitution in position 495 (A495T), which results in an amino acid substitution in codon 136 (Y136F) and correlates with high levels of azole resistance. We also found a nucleotide substitution in position 1119 (A1119C) in 15 U.S. isolates, whose mean EC50 value was equivalent to that for the Y136F isolates. Isolates carrying mutation A1119C had significantly greater CYP51 expression, even though A1119C does not affect the CYP51 amino acid sequence. Regression analysis showed no significant effects of the expression of efflux transporter genes on EC50. Both the Y136F mutation in CYP51 and increased CYP51 expression appear responsible for azole resistance in eastern U.S. populations of E. necator.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Ascomicetos/genética , Farmacorresistência Fúngica/genética , Esterol 14-Desmetilase/genética , Ascomicetos/metabolismo , Azóis , Fungicidas Industriais , Expressão Gênica , Variação Genética , Vitis/microbiologia
14.
PLoS One ; 9(9): e106740, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25181515

RESUMO

Most asexual species of fungi have either lost sexuality recently, or they experience recombination by cryptic sexual reproduction. Verticillium dahliae is a plant-pathogenic, ascomycete fungus with no known sexual stage, even though related genera have well-described sexual reproduction. V. dahliae reproduces mitotically and its population structure is highly clonal. However, previously described discrepancies in phylogenetic relationships among clonal lineages may be explained more parsimoniously by recombination than mutation; therefore, we looked for evidence of recombination within and between clonal lineages. Genotyping by sequencing was performed on 141 V. dahliae isolates from diverse geographic and host origins, resulting in 26,748 single-nucleotide polymorphisms (SNPs). We found a strongly clonal population structure with the same lineages as described previously by vegetative compatibility groups (VCGs) and molecular markers. We detected 443 recombination events, evenly distributed throughout the genome. Most recombination events detected were between clonal lineages, with relatively few recombinant haplotypes detected within lineages. The only three isolates with mating type MAT1-1 had recombinant SNP haplotypes; all other isolates had mating type MAT1-2. We found homologs of eight meiosis-specific genes in the V. dahliae genome, all with conserved or partially conserved protein domains. The extent of recombination and molecular signs of sex in (mating-type and meiosis-specific genes) suggest that V. dahliae clonal lineages arose by recombination, even though the current population structure is markedly clonal. Moreover, the detection of new lineages may be evidence that sexual reproduction has occurred recently and may potentially occur under some circumstances. We speculate that the current clonal population structure, despite the sexual origin of lineages, has arisen, in part, as a consequence of agriculture and selection for adaptation to agricultural cropping systems.


Assuntos
Técnicas de Genotipagem , Recombinação Genética , Reprodução Assexuada , Análise de Sequência de DNA , Verticillium/genética , Verticillium/fisiologia , Genes Fúngicos Tipo Acasalamento/genética , Genômica , Meiose/genética , Polimorfismo de Nucleotídeo Único , Homologia de Sequência do Ácido Nucleico , Verticillium/citologia
15.
PLoS Pathog ; 10(7): e1004293, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25077948

RESUMO

For the last three decades, evolutionary biologists have sought to understand which factors modulate the evolution of parasite virulence. Although theory has identified several of these modulators, their effect has seldom been analysed experimentally. We investigated the role of two such major factors-the mode of transmission, and host adaptation in response to parasite evolution-in the evolution of virulence of the plant virus Cucumber mosaic virus (CMV) in its natural host Arabidopsis thaliana. To do so, we serially passaged three CMV strains under strict vertical and strict horizontal transmission, alternating both modes of transmission. We quantified seed (vertical) transmission rate, virus accumulation, effect on plant growth and virulence of evolved and non-evolved viruses in the original plants and in plants derived after five passages of vertical transmission. Our results indicated that vertical passaging led to adaptation of the virus to greater vertical transmission, which was associated with reductions of virus accumulation and virulence. On the other hand, horizontal serial passages did not significantly modify virus accumulation and virulence. The observed increases in CMV seed transmission, and reductions in virus accumulation and virulence in vertically passaged viruses were due also to reciprocal host adaptation during vertical passages, which additionally reduced virulence and multiplication of vertically passaged viruses. This result is consistent with plant-virus co-evolution. Host adaptation to vertically passaged viruses was traded-off against reduced resistance to the non-evolved viruses. Thus, we provide evidence of the key role that the interplay between mode of transmission and host-parasite co-evolution has in determining the evolution of virulence.


Assuntos
Arabidopsis/virologia , Cucumovirus/patogenicidade , Evolução Molecular , Interações Hospedeiro-Patógeno/fisiologia , Transmissão Vertical de Doenças Infecciosas , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Virulência/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , RNA Viral/genética
16.
Phytopathology ; 102(10): 997-1005, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22755546

RESUMO

Random mating and recombination in heterothallic ascomycetes should result in high genotypic diversity, 1:1 mating-type ratios, and random associations of alleles, or linkage equilibrium, at different loci. To test for random mating in populations of the grape powdery mildew fungus Erysiphe necator, we sampled isolates from vineyards of Vitis vinifera in Burdett, NY (NY09) and Winchester, VA (VA09) at the end of the epidemic in fall 2009. We also sampled isolates from the same Winchester, VA vineyard in spring 2010 at the onset of the next epidemic. Isolates were genotyped for mating type and 11 microsatellite markers. In the spring sample, which originated from ascospore infections, nearly every isolate had a unique genotype. In contrast, fall populations were less diverse. In all, 9 of 45 total genotypes in VA09 were represented by two or more isolates; 3 of 40 total genotypes in NY09 were represented by two or more isolates, with 1 genotype represented by 20 isolates. After clone correction, mating-type ratios in the three populations did not deviate from 1:1. However, even with clone correction, we detected significant linkage disequilibrium (LD) in all populations. Mantel tests detected positive correlations between genetic and physical distances within vineyards. Spatial autocorrelation showed aggregations up to 42 and 3 m in VA09 and NY09, respectively. Spatial autocorrelation most likely results from short dispersal distances. Overall, these results suggest that spatial genetic aggregation and clonal genotypes that arise during the asexual phase of the epidemic contribute to persistent LD even though populations undergo sexual reproduction annually.


Assuntos
Ascomicetos/fisiologia , Desequilíbrio de Ligação , Ascomicetos/genética , DNA Fúngico/genética , DNA Fúngico/isolamento & purificação , Genótipo , Reação em Cadeia da Polimerase
17.
Mol Plant Pathol ; 13(1): 1-16, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21726395

RESUMO

UNLABELLED: Few plant pathogens have had a more profound effect on the evolution of disease management than Erysiphe necator, which causes grapevine powdery mildew. When the pathogen first spread from North America to England in 1845, and onwards to France in 1847, 'germ theory' was neither understood among the general populace nor even generally accepted within the scientific community. Louis Pasteur had only recently reported the microbial nature of fermentation, and it would be another 30 years before Robert Koch would publish his proofs of the microbial nature of certain animal diseases. However, within 6 years after the arrival of the pathogen, nearly 6 million grape growers in France were routinely applying sulphur to suppress powdery mildew on nearly 2.5 million hectares of vineyards (Campbell, 2006). The pathogen has remained a focus for disease management efforts ever since. Because of the worldwide importance of the crop and its susceptibility to the disease, and because conventional management with modern, organic fungicides has been compromised on several occasions since 1980 by the evolution of fungicide resistance, there has also been a renewed effort worldwide to explore the pathogen's biology and ecology, its genetics and molecular interactions with host plants, and to refine current and suggest new management strategies. These latter aspects are the subject of our review. TAXONOMY: The most widely accepted classification follows. Family Erysiphaceae, Erysiphe necator Schw. [syn. Uncinula necator (Schw.) Burr., E. tuckeri Berk., U. americana Howe and U. spiralis Berk. & Curt; anamorph Oidium tuckeri Berk.]. Erysiphe necator var. ampelopsidis was found on Parthenocissus spp. in North America according to Braun (1987), although later studies revealed isolates whose host range spanned genera, making the application of this taxon somewhat imprecise (Gadoury and Pearson, 1991). The classification of the genera before 1980 was based on features of the mature ascocarp: (i) numbers of asci; and (ii) morphology of the appendages, in particular the appendage tips. The foregoing has been supplanted by phylogeny inferred from the internal transcribed spacer (ITS) of ribosomal DNA sequences (Saenz and Taylor, 1999), which correlates with conidial ontogeny and morphology (Braun et al., 2002). HOST RANGE: The pathogen is obligately parasitic on genera within the Vitaceae, including Vitis, Cissus, Parthenocissus and Ampelopsis (Pearson and Gadoury, 1992). The most economically important host is grapevine (Vitis), particularly the European grape, V. vinifera, which is highly susceptible to powdery mildew. Disease symptoms and signs: In the strictest sense, macroscopically visible mildew colonies are signs of the pathogen rather than symptoms resulting from its infection, but, for convenience, we describe the symptoms and signs together as the collective appearance of colonized host tissues. All green tissues of the host may be infected. Ascospore colonies are most commonly found on the lower surface of the first-formed leaves near the bark of the vine, and may be accompanied by a similarly shaped chlorotic spot on the upper surface. Young colonies appear whitish and those that have not yet sporulated show a metallic sheen. They are roughly circular, ranging in size from a few millimetres to a centimetre or more in diameter, and can occur singly or in groups that coalesce to cover much of the leaf. Senescent colonies are greyish, and may bear cleistothecia in various stages of development. Dead epidermal cells often subtend the colonized area, as natural mortality in the mildew colony, the use of fungicides, mycoparasites or resistance responses in the leaf result in the deaths of segments of the mildew colony and infected epidermal cells. Severely affected leaves usually senesce, develop necrotic blotches and fall prematurely. Infection of stems initially produces symptoms similar to those on leaves, but colonies on shoots are eventually killed as periderm forms, producing a dark, web-like scar on the cane (Gadoury et al., 2011). Inflorescences and berries are most susceptible when young, and can become completely coated with whitish mildew. The growth of the berry epidermal tissue stops when severely infected, which may result in splitting as young fruit expand. Berries in a transitional stage between susceptible and resistant (generally between 3 and 4 weeks after anthesis) develop diffuse, nonsporulating mildew colonies only visible under magnification. Diffuse colonies die as berries continue to mature, leaving behind a network of necrotic epidermal cells (Gadoury et al., 2007). Survival over winter as mycelium in buds results in a distinctive foliar symptom. Shoots arising from these buds may be heavily coated with fungal growth, stark white in colour and stand out like white flags in the vine, resulting in the term 'flag shoots'. More commonly, colonization of a flag shoot is less extensive, and infection of a single leaf, or of leaves on one side of the shoot only, is observed (Gadoury et al., 2011).


Assuntos
Ascomicetos/fisiologia , Ecossistema , Doenças das Plantas/microbiologia , Vitis/microbiologia , Ascomicetos/citologia , Ascomicetos/imunologia , Resistência à Doença/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/estatística & dados numéricos , Reprodução , Vitis/imunologia
18.
Genetics ; 190(1): 113-27, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22021387

RESUMO

Genetic nonself recognition systems such as vegetative incompatibility operate in many filamentous fungi to regulate hyphal fusion between genetically dissimilar individuals and to restrict the spread of virulence-attenuating mycoviruses that have potential for biological control of pathogenic fungi. We report here the use of a comparative genomics approach to identify seven candidate polymorphic genes associated with four vegetative incompatibility (vic) loci of the chestnut blight fungus Cryphonectria parasitica. Disruption of candidate alleles in one of two strains that were heteroallelic at vic2, vic6, or vic7 resulted in enhanced virus transmission, but did not prevent barrage formation associated with mycelial incompatibility. Detailed characterization of the vic6 locus revealed the involvement of nonallelic interactions between two tightly linked genes in barrage formation, heterokaryon formation, and asymmetric, gene-specific influences on virus transmission. The combined results establish molecular identities of genes associated with four C. parasitica vic loci and provide insights into how these recognition factors interact to trigger incompatibility and restrict virus transmission.


Assuntos
Ascomicetos/genética , Ascomicetos/virologia , Proteínas Fúngicas/genética , Alelos , Epistasia Genética , Proteínas Fúngicas/metabolismo , Loci Gênicos , Genótipo , Técnicas de Genotipagem , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Polimorfismo Genético
19.
Phytopathology ; 102(1): 83-93, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22165984

RESUMO

Race-specific resistance against powdery mildews is well documented in small grains but, in other crops such as grapevine, controlled analysis of host-pathogen interactions on resistant plants is uncommon. In the current study, we attempted to confirm powdery mildew resistance phenotypes through vineyard, greenhouse, and in vitro inoculations for test cross-mapping populations for two resistance sources: (i) a complex hybrid breeding line, 'Bloodworth 81-107-11', of at least Vitis rotundifolia, V. vinifera, V. berlandieri, V. rupestris, V. labrusca, and V. aestivalis background; and (ii) Vitis hybrid 'Tamiami' of V. aestivalis and V. vinifera origin. Statistical analysis of vineyard resistance data suggested the segregation of two and three race-specific resistance genes from the two sources, respectively. However, in each population, some resistant progeny were susceptible in greenhouse or in vitro screens, which suggested the presence of Erysiphe necator isolates virulent on progeny segregating for one or more resistance genes. Controlled inoculation of resistant and susceptible progeny with a diverse set of E. necator isolates clearly demonstrated the presence of fungal races differentially interacting with race-specific resistance genes, providing proof of race specificity in the grape powdery mildew pathosystem. Consistent with known race-specific resistance mechanisms, both resistance sources were characterized by programmed cell death of host epidermal cells under appressoria, which arrested or slowed hyphal growth; this response was also accompanied by collapse of conidia, germ tubes, appressoria, and secondary hyphae. The observation of prevalent isolates virulent on progeny with multiple race-specific resistance genes before resistance gene deployment has implications for grape breeding strategies. We suggest that grape breeders should characterize the mechanisms of resistance and pyramid multiple resistance genes with different mechanisms for improved durability.


Assuntos
Ascomicetos/patogenicidade , Hifas/crescimento & desenvolvimento , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Vitis/imunologia , Ascomicetos/citologia , Cruzamento , Mapeamento Cromossômico , Genótipo , Heterozigoto , Interações Hospedeiro-Patógeno , Hibridização Genética , Hifas/citologia , Fenótipo , Doenças das Plantas/microbiologia , Epiderme Vegetal/citologia , Epiderme Vegetal/genética , Epiderme Vegetal/imunologia , Epiderme Vegetal/microbiologia , Especificidade da Espécie , Virulência , Vitis/citologia , Vitis/genética , Vitis/microbiologia
20.
Fungal Genet Biol ; 48(7): 704-13, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21515399

RESUMO

In ascomycetes, mating compatibility is regulated by the mating-type locus, MAT1. The objectives of this study were to identify and sequence genes at the MAT1 locus in the grape powdery mildew fungus, Erysiphe necator, to develop a PCR-based marker for determining mating type in E. necator, and to develop degenerate primers for amplification by PCR of conserved regions of mating-type idiomorphs in other powdery mildew fungi. We identified MAT1-2-1 of the MAT1-2 idiomorph in E. necator based on the homologous sequence in the genome of Blumeria graminis f. sp. hordei and we found MAT1-1-1 and MAT1-1-3 of the MAT1-1 idiomorph from transcriptome sequences of E. necator. We developed and applied a reliable PCR-based multiplex marker to confirm that genotype correlated with mating phenotype, which was determined by pairing with mating-type tester isolates. Additionally, we used the marker to genotype populations of E. necator from different Vitis spp. from throughout the USA. We found both mating types were present in all populations and mating-type ratios did not deviate from 1:1. The mating-type genes in E. necator are similar to those of other Leotiomycetes; however, the structure of the MAT1 locus in E. necator, like the MAT1-2 idiomorph of B. graminis, is markedly different from other ascomycetes in that it is greatly expanded and may contain a large amount of repetitive DNA. As a result, we were unable to amplify and sequence either idiomorph in its entirety. We designed degenerate primers that amplify conserved regions of MAT1-1 and MAT1-2 in E. necator, Podosphaera xanthii, Microsphaera syringae, and B. graminis, representing the major clades of the Erysiphales. These degenerate primers or sequences obtained in this study from these species can be used to identify and sequence MAT1 genes or design mating-type markers in other powdery mildew fungi as well.


Assuntos
Ascomicetos/classificação , Ascomicetos/genética , Ordem dos Genes , Genes Fúngicos Tipo Acasalamento , Técnicas de Tipagem Micológica , Reação em Cadeia da Polimerase/métodos , Primers do DNA/genética , DNA Fúngico/química , DNA Fúngico/genética , Dados de Sequência Molecular , Micologia/métodos , Análise de Sequência de DNA , Estados Unidos , Vitis/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA