Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Physiol Rep ; 11(20): e15842, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37849053

RESUMO

Bird flight muscle can lose as much as 20% of its mass during a migratory flight due to protein catabolism, and catabolism can be further exacerbated under dehydrating conditions. However, the functional consequences of exercise and environment induced protein catabolism on muscle has not been examined. We hypothesized that prolonged flight would cause a decline in muscle mass, aerobic capacity, and contractile performance. This decline would be heightened for birds placed under dehydrating environmental conditions, which typically increases lean mass losses. Yellow-rumped warblers (Setophaga coronata) were exposed to dry or humid (12 or 80% relative humidity at 18°C) conditions for up to 6 h while at rest or undergoing flight. The pectoralis muscle was sampled after flight/rest or after 24 h of recovery, and contractile properties and enzymatic capacity for aerobic metabolism was measured. There was no change in lipid catabolism or force generation of the muscle due to flight or humidity, despite reductions in pectoralis dry mass immediately post-flight. However, there was a slowing of myosin-actin crossbridge kinetics under dry compared to humid conditions. Aerobic and contractile function is largely preserved after 6 h of exercise, suggesting that migratory birds preserve energy pathways and function in the muscle.


Assuntos
Aves Canoras , Animais , Aves Canoras/metabolismo , Umidade , Músculos
2.
Endocrinology ; 164(10)2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37633264

RESUMO

In males, skeletal muscle function may be altered by shifts in either circulating testosterone or estrogen. We examined the effect of acute (2-week) exposures to 17α-ethinyl estradiol (EE2), an estrogen receptor (ER) agonist, or flutamide, an androgen receptor (AR) antagonist, on the contractile function of individual skeletal muscle fibers from slow-contracting soleus and fast-contracting extensor digitorum longus muscles from adult male mice. Single fiber specific tension (force divided by cross-sectional area) was decreased with flutamide treatment in all myosin heavy chain (MHC) fiber types examined (I, IIA, and IIB); similar effects were observed with EE2 treatment but only in the fastest-contracting MHC IIB fibers. The decreases in maximally Ca2+-activated specific tension were primarily a result of fewer strongly bound myosin-actin cross-bridges, with flutamide treatment also showing lower myofilament lattice stiffness. Myosin-actin cross-bridge kinetics were slower in MHC IIA fibers in flutamide-treated mice, but faster in EE2-treated mice, indicating that contractile velocity may be affected differently in this fiber type, which is commonly expressed in human skeletal muscle. Importantly, these effects were observed in the absence of outcomes previously used to evaluate ER agonists or AR antagonists in rodents including weight of reproductive organs or mammary gland morphology. Our findings indicate that substantial shifts in skeletal muscle function occur in male mice following acute exposures to low doses of a pharmacological ER agonist and an AR antagonist. These results suggest that countermeasures to maintain physical function may be needed early in situations that induce similar ER agonist and AR antagonist conditions.


Assuntos
Actinas , Antagonistas de Receptores de Andrógenos , Adulto , Humanos , Masculino , Animais , Camundongos , Flutamida/farmacologia , Músculo Esquelético , Estrogênios
3.
Physiol Rep ; 11(7): e15651, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37020355

RESUMO

Children with chronic kidney disease (CKD) frequently exhibit delayed physical development and reduced physical performance, presumably due to skeletal muscle dysfunction. However, the cellular and molecular basis of skeletal muscle impairment in juvenile CKD remains poorly understood. Cellular (single fiber) and molecular (myosin-actin interactions and myofilament properties) function was examined ex vivo in slow (soleus) and fast (extensor digitorum longus) contracting muscles of juvenile male (6 weeks old) CKD and control mice. CKD was induced by 0.2% adenine diet for 3 weeks starting at 3 weeks of age. Specific tension (maximal isometric force divided by cross-sectional area) was reduced in larger myosin heavy chain (MHC) I and IIA fibers and in all IIB fibers in juvenile male mice with CKD due to fewer strongly bound myosin-actin cross-bridges. Fiber cross-sectional area in juvenile CKD mice was unchanged in MHC I and IIB fibers and increased in MHC IIA fibers, compared to controls. CKD slowed cross-bridge kinetics (slower rate of myosin force production and longer myosin attachment time, ton ) in MHC IIA fibers, and accelerated kinetics (shorter ton ) in MHC IIB fibers, which may indicate fiber type dependent shifts in contractile velocity in juvenile CKD. Overall, our findings show that single fiber myopathy is an early event during juvenile CKD, manifesting prior to the development of cellular atrophy as reduced force generation due to fewer strongly bound myosin heads. These results warrant clinical translation and call for early interventions to preserve physical function in children with CKD.


Assuntos
Actinas , Insuficiência Renal Crônica , Masculino , Camundongos , Animais , Actinas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Contração Muscular/fisiologia , Miosinas/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Insuficiência Renal Crônica/metabolismo
4.
Kidney360 ; 3(5): 843-858, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-36128477

RESUMO

Background: Patients with chronic kidney disease (CKD) frequently have compromised physical performance, which increases their mortality; however, their skeletal muscle dysfunction has not been characterized at the single-fiber and molecular levels. Notably, interventions to mitigate CKD myopathy are scarce. Methods: The effect of CKD in the absence and presence of iron supplementation on the contractile function of individual skeletal muscle fibers from the soleus and extensor digitorum longus muscles was evaluated in 16-week-old mice. CKD was induced by the adenine diet, and iron supplementation was by weekly iron dextran injections. Results: Maximally activated and fatigued fiber force production was decreased 24%-52% in untreated CKD, independent of size, by reducing strongly bound myosin/actin cross-bridges and/or decreasing myofilament stiffness in myosin heavy chain (MHC) I, IIA, and IIB fibers. Additionally, myosin/actin interactions in untreated CKD were slower for MHC I and IIA fibers and unchanged or faster in MHC IIB fibers. Iron supplementation improved anemia and did not change overall muscle mass in CKD mice. Iron supplementation ameliorated CKD-induced myopathy by increasing strongly bound cross-bridges, leading to improved specific tension, and/or returning the rate of myosin/actin interactions toward or equivalent to control values in MHC IIA and IIB fibers. Conclusions: Skeletal muscle force production was significantly reduced in untreated CKD, independent of fiber size, indicating that compromised physical function in patients is not solely due to muscle mass loss. Iron supplementation improved multiple aspects of CKD-induced myopathy, suggesting that timely correction of iron imbalance may aid in ameliorating contractile deficits in CKD patients.


Assuntos
Cadeias Pesadas de Miosina , Insuficiência Renal Crônica , Actinas/metabolismo , Adenina/metabolismo , Animais , Dextranos/metabolismo , Suplementos Nutricionais , Ferro/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosinas/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico
5.
Biophys J ; 121(8): 1424-1434, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35314143

RESUMO

Viscoelastic properties of striated muscle are often measured using length perturbation analysis and quantified as a complex modulus, whose elastic and viscous components reflect the energy-storage and energy-absorbing properties of the tissue, respectively. The energy stored as inertia is commonly ignored due to the small size of samples examined, typically <1 mm. Considering recent advances in tissue engineering to generate muscle tissues of larger sizes, we questioned whether ignoring the inertial artifact was still reasonable in these samples. To answer this question, we derived and solved the one-dimensional wave equation that describes the propagation of strain along the length of a sample. The inertial artifact was predicted to contaminate the elastic modulus with (2πf)2L02ρ/6, where f is perturbation frequency, L0 is muscle length, and ρ is muscle density. We then measured viscoelastic properties up to 500 Hz in mouse skeletal muscle fibers at long (4.8 mm) and short (<1 mm) lengths and up to 100 Hz in rat cardiac slices at long (10-12 mm) and short (<2 mm) lengths. We found the elastic modulus of long preparations was elevated as frequency increased and was about half the magnitude of that predicted by the model. While the prediction tended to overestimate the measured inertial artifact, these results provided some validity to the model. We used the predicted artifact as an overly conservative estimate of error that might arise in a mechanics assay of mammalian striated muscle, whose nominal resting stiffness is on the order 100 kN m-2. We found that muscle lengths of <1 mm resulted in negligible inertial artifact (<0.5% error) for perturbation frequencies under 250 Hz. Muscle samples longer than 5 mm, on the other hand, would result in >5% error at frequencies of 200 Hz and higher.


Assuntos
Artefatos , Músculo Esquelético , Animais , Módulo de Elasticidade , Elasticidade , Mamíferos , Camundongos , Ratos , Viscosidade
6.
Food Chem ; 373(Pt B): 131277, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34799132

RESUMO

This study demonstrated the combination of black pepper and a canola oil-based emulsion synergistically enhanced carotenoid bioavailability of raw vegetables in humans. In a randomized crossover design, healthy young adults consumed (1) vegetable salad (control), (2) salad with canola oil emulsion (COE), (3) salad with black pepper (BP), and (4) salad with canola oil emulsion and black pepper (COE + BP). COE + BP led to a higher AUC0-10h of total plasma carotenoids (p < 0.0005) than the control (6.1-fold), BP (2.1-fold), and COE (3.0-fold). COE + BP increased AUC0-10h of plasma lutein, α-carotene, ß-carotene, and lycopene by 4.8, 9.7, 7.6, and 5.5-fold than the control, respectively (p < 0.0001). COE + BP produced a significant synergy in increasing both Cmax and AUC0-10h of total carotenoids, α-carotene, ß-carotene, and lycopene. Moreover, COE + BP produced a stronger enhancement on AUC0-10h of total carotenoids, α-carotene, ß-carotene, and lycopene in females than in males.


Assuntos
Piper nigrum , Verduras , Disponibilidade Biológica , Carotenoides , Emulsões , Humanos , Luteína , Óleos de Plantas , Adulto Jovem
7.
Structure ; 29(12): 1339-1356.e7, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33770503

RESUMO

Neuronal voltage-gated sodium channel NaV1.2 C-terminal domain (CTD) binds calmodulin (CaM) constitutively at its IQ motif. A solution structure (6BUT) and other NMR evidence showed that the CaM N domain (CaMN) is structurally independent of the C-domain (CaMC) whether CaM is bound to the NaV1.2IQp (1,901-1,927) or NaV1.2CTD (1,777-1,937) with or without calcium. However, in the CaM + NaV1.2CTD complex, the Ca2+ affinity of CaMN was more favorable than in free CaM, while Ca2+ affinity for CaMC was weaker than in the CaM + NaV1.2IQp complex. The CTD EF-like (EFL) domain allosterically widened the energetic gap between CaM domains. Cardiomyopathy-associated CaM mutants (N53I(N54I), D95V(D96V), A102V(A103V), E104A(E105A), D129G(D130G), and F141L(F142L)) all bound the NaV1.2 IQ motif favorably under resting (apo) conditions and bound calcium normally at CaMN sites. However, only N53I and A102V bound calcium at CaMC sites at [Ca2+] < 100 µM. Thus, they are expected to respond like wild-type CaM to Ca2+ spikes in excitable cells.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Calmodulina/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Calmodulina/genética , Humanos , Mutação , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Ligação Proteica
8.
J Appl Physiol (1985) ; 130(1): 10-16, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33211593

RESUMO

Obesity has become one of the most pressing public health issues of the 21st century and currently affects a substantial proportion of the older adult population. Although the cardiometabolic complications are well documented, research from the past 20 years has drawn attention to the detrimental effects of obesity on physical performance in older adults. Obesity-related declines in physical performance are due, in part, to compromised muscle strength and power. Recent evidence suggests there are a number of mechanisms potentially underlying reduced whole muscle function, including alterations in myofilament protein function and cellular contractile properties, and these may be related to morphological adaptations, such as shifts in fiber type composition and increased intramyocellular lipid content within skeletal muscle. To date, even less research has focused on how exercise and weight loss interventions for obese older adults affect these mechanisms. In light of this work, we provide an update on the current knowledge related to obesity and skeletal muscle contractile function and highlight a number of questions to address potential etiologic mechanisms as well as intervention strategies, which may help advance our understanding of how physical performance can be improved among obese older adults.


Assuntos
Contração Muscular , Fibras Musculares Esqueléticas , Idoso , Humanos , Força Muscular , Músculo Esquelético , Obesidade
9.
Am J Physiol Cell Physiol ; 319(6): C1158-C1162, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32997515

RESUMO

The myosin super-relaxed state (SRX) in skeletal muscle is hypothesized to play an important role in regulating muscle contractility and thermogenesis in humans but has only been examined in model organisms. Here we report the first human skeletal muscle SRX measurements, using quantitative epifluorescence microscopy of fluorescent 2'/3'-O-(N-methylanthraniloyl) ATP (mantATP) single-nucleotide turnover. Myosin heavy chain (MHC) isoform expression was determined using gel electrophoresis for each permeabilized vastus lateralis fiber, to allow for novel comparisons of SRX between fiber types. We find that the fraction of myosin in SRX is less in MHC IIA fibers than in MHC I and IIAX fibers (P = 0.008). ATP turnover of SRX is faster in MHC IIAX fibers compared with MHC I and IIA fibers (P = 0.001). We conclude that SRX biochemistry is measurable in human skeletal muscle, and our data indicate that SRX depends on fiber type as classified by MHC isoform. Extension from this preliminary work would provide further understanding regarding the role of SRX in human muscle physiology.


Assuntos
Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Termogênese/fisiologia , Adulto , Humanos , Isoformas de Proteínas/metabolismo , Músculo Quadríceps/citologia , Músculo Quadríceps/metabolismo , Adulto Jovem
10.
J Appl Physiol (1985) ; 129(2): 392-403, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32702280

RESUMO

As studies examining the hypertrophic effects of resistance training (RT) at the cellular level have produced inconsistent results, we performed a systematic review and meta-analysis to investigate muscle fiber size before and after a structured RT intervention in older adults. A random-effects model was used to calculate mean effect size (ES) and 95% confidence intervals (CI). Thirty-five studies were included (age range: 59.0-88.5 yr), and 44 and 30 effects were used to estimate RT impact on myosin heavy chain (MHC) I and II fiber size. RT produced moderate-to-large increases in MHC I (ES = +0.51, 95%CI +0.31 to +0.71; P < 0.001) and II (ES = +0.81, 95%CI +0.56 to +1.05; P < 0.001) fiber size, with men and women having a similar response. Age was negatively associated with change in muscle fiber size for both fiber types (MHC I: R2 = 0.11, ß = -0.33, P = 0.002; MHC II: R2 = 0.10, ß = -0.32, P = 0.04), indicating a less robust hypertrophic response as age increases in older adults. Unexpectedly, a higher training intensity (defined as percentage of one-repetition maximum) was associated with a smaller increase in MHC II fiber size (R2 = 15.09%, ß = -0.39, P = 0.01). Notably, MHC II fiber subtypes (IIA, IIX, IIAX) were examined less frequently, but RT improved their size. Overall, our findings indicate that RT induces cellular hypertrophy in older adults, although the effect is attenuated with increasing age. In addition, hypertrophy of MHC II fibers was reduced with higher training intensity, which may suggest a failure of muscle fibers to hypertrophy in response to high loads in older adults.


Assuntos
Treinamento Resistido , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Hipertrofia , Masculino , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas , Músculo Esquelético , Cadeias Pesadas de Miosina
11.
J Gerontol A Biol Sci Med Sci ; 75(12): 2333-2341, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32492709

RESUMO

Skeletal muscle myopathies represent a common non-pulmonary manifestation of influenza infection, leading to reduced physical function and hospitalization in older adults. However, underlying mechanisms remain poorly understood. Our study examined the effects of influenza virus A pulmonary infection on contractile function at the cellular (single fiber) and molecular (myosin-actin interactions and myofilament properties) levels in soleus and extensor digitorum longus muscles of aged (20 months) C57BL/6 male mice that were healthy or flu-infected for 7 (7-days post-infection; 7-DPI) or 12 days (12-DPI). Cross-sectional area (CSA) of myosin heavy chain (MHC) IIA and IIB fibers was reduced at 12-DPI relative to 7-DPI and healthy. Maximal isometric force in MHC IIA fibers was also reduced at 12-DPI relative to 7-DPI and healthy, resulting in no change in specific force (maximal isometric force divided by CSA). In contrast, MHC IIB fibers produced greater isometric force and specific force at 7-DPI compared to 12-DPI or healthy. The increased specific force in MHC IIB fibers was likely due to greater myofilament lattice stiffness and/or an increased number or stiffness of strongly bound myosin-actin cross-bridges. At the molecular level, cross-bridge kinetics were slower in MHC IIA fibers with infection, while changes in MHC IIB fibers were largely absent. In both fiber types, greater myofilament lattice stiffness was positively related to specific force. This study provides novel evidence that cellular and molecular contractile function is impacted by influenza infection in a fiber type-specific manner, suggesting potential molecular mechanisms to help explain the impact of flu-induced myopathies.


Assuntos
Músculo Esquelético/imunologia , Músculo Esquelético/fisiopatologia , Infecções por Orthomyxoviridae/imunologia , Actinas/imunologia , Fatores Etários , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/imunologia , Miofibrilas/imunologia , Cadeias Pesadas de Miosina/imunologia
12.
J Gen Physiol ; 152(4)2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32197271

RESUMO

The force response of cardiac muscle undergoing a quick stretch is conventionally interpreted to represent stretching of attached myosin crossbridges (phase 1) and detachment of these stretched crossbridges at an exponential rate (phase 2), followed by crossbridges reattaching in increased numbers due to an enhanced activation of the thin filament (phases 3 and 4). We propose that, at least in mammalian cardiac muscle, phase 2 instead represents an enhanced detachment rate of myosin crossbridges due to stretch, phase 3 represents the reattachment of those same crossbridges, and phase 4 is a passive-like viscoelastic response with power-law relaxation. To test this idea, we developed a two-state model of crossbridge attachment and detachment. Unitary force was assigned when a crossbridge was attached, and an elastic force was generated when an attached crossbridge was displaced. Attachment rate, f(x), was spatially distributed with a total magnitude f0. Detachment rate was modeled as g(x) = g0+ g1x, where g0 is a constant and g1 indicates sensitivity to displacement. The analytical solution suggested that the exponential decay rate of phase 2 represents (f0 + g0) and the exponential rise rate of phase 3 represents g0. The depth of the nadir between phases 2 and 3 is proportional to g1. We prepared skinned mouse myocardium and applied a 1% stretch under varying concentrations of inorganic phosphate (Pi). The resulting force responses fitted the analytical solution well. The interpretations of phases 2 and 3 were consistent with lower f0 and higher g0 with increasing Pi. This novel scheme of interpreting the force response to a quick stretch does not require enhanced thin-filament activation and suggests that the myosin detachment rate is sensitive to stretch. Furthermore, the enhanced detachment rate is likely not due to the typical detachment mechanism following MgATP binding, but rather before MgADP release, and may involve reversal of the myosin power stroke.


Assuntos
Miosinas Cardíacas/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Humanos , Mamíferos/metabolismo , Camundongos , Miocárdio/metabolismo , Fosfatos/metabolismo
13.
J Appl Physiol (1985) ; 127(6): 1632-1639, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31697594

RESUMO

Skeletal muscle myosin heavy chain (MyHC) fiber type composition is a critical determinant of overall muscle function and health. Various approaches interrogate fiber type at the single cell, but the two most commonly utilized are single-muscle fiber sodium dodecyl sulfate-polyacrylamide gel electrophoresis (smfSDS-PAGE) and fluorescent immunohistochemistry (IHC). Although smfSDS-PAGE is generally considered the "gold standard," IHC is more commonly used because of its time-effectiveness and relative ease. Unfortunately, there is lingering inconsistency on how best to accurately and quickly determine fiber type via IHC and an overall misunderstanding regarding pure fiber type proportions, specifically the abundance of fibers exclusively expressing highly glycolytic MyHC IIX in humans. We therefore 1) present information and data showing the low abundance of pure MyHC IIX muscle fibers in healthy human skeletal muscle and 2) leverage this information to provide straightforward protocols that are informed by human biology and employ inexpensive, easily attainable antibodies for the accurate determination of fiber type.


Assuntos
Imunofluorescência/métodos , Fibras Musculares Esqueléticas/química , Cadeias Pesadas de Miosina/análise , Humanos
14.
Am J Physiol Cell Physiol ; 317(6): C1143-C1152, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31532715

RESUMO

Stretch activation (SA) is a delayed increase in force following a rapid muscle length increase. SA is best known for its role in asynchronous insect flight muscle, where it has replaced calcium's typical role of modulating muscle force levels during a contraction cycle. SA also occurs in mammalian skeletal muscle but has previously been thought to be too low in magnitude, relative to calcium-activated (CA) force, to be a significant contributor to force generation during locomotion. To test this supposition, we compared SA and CA force at different Pi concentrations (0-16 mM) in skinned mouse soleus (slow-twitch) and extensor digitorum longus (EDL; fast-twitch) muscle fibers. CA isometric force decreased similarly in both muscles with increasing Pi, as expected. SA force decreased with Pi in EDL (40%), leaving the SA to CA force ratio relatively constant across Pi concentrations (17-25%). In contrast, SA force increased in soleus (42%), causing a quadrupling of the SA to CA force ratio, from 11% at 0 mM Pi to 43% at 16 mM Pi, showing that SA is a significant force modulator in slow-twitch mammalian fibers. This modulation would be most prominent during prolonged muscle use, which increases Pi concentration and impairs calcium cycling. Based upon our previous Drosophila myosin isoform studies and this work, we propose that in slow-twitch fibers a rapid stretch in the presence of Pi reverses myosin's power stroke, enabling quick rebinding to actin and enhanced force production, while in fast-twitch fibers, stretch and Pi cause myosin to detach from actin.


Assuntos
Actinas/genética , Contração Isométrica/efeitos dos fármacos , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Miosinas/genética , Fosfatos/farmacologia , Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Fenômenos Biomecânicos , Cálcio/metabolismo , Drosophila melanogaster/fisiologia , Feminino , Expressão Gênica , Contração Isométrica/fisiologia , Mecanotransdução Celular , Camundongos , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Miosinas/metabolismo , Técnicas de Cultura de Tecidos
15.
J Appl Biomech ; 35(4): 263-271, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31034317

RESUMO

Older females experience higher rates of disability than males, potentially due to sex-specific differences in gait and muscle function. The authors evaluated the effects of age and physical activity (PA) on gait mechanics and knee extensor muscle function in males and females. Three groups of 20 individuals (each 10 females) participated: young (21-35 y) and highly and less active older (55-70 y) adults. Knee extensor strength and joint mechanics during preferred speed gait were collected before and after 30 minutes of walking. Age by sex and PA by sex interactions indicated older and less active older females had lower concentric knee extensor muscle power and larger hip extension moments than males. After 30 minutes of walking, older less active adults had larger decreases in knee extensor power than their highly active older counterparts, and older adults of both sexes had decreases in ankle dorsiflexion moments while young adults did not. These results suggest that older, particularly less active, adults are susceptible to knee extensor muscle fatigue from moderate activity. For older adults, high levels of PA may be necessary to preserve gait mechanics in response to a bout of exercise. This new information may be important for targeting interventions in at-risk older adults.


Assuntos
Envelhecimento/fisiologia , Exercício Físico/fisiologia , Marcha/fisiologia , Articulação do Joelho/fisiologia , Fatores Etários , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Força Muscular/fisiologia , Fatores Sexuais , Torque
18.
J Gerontol A Biol Sci Med Sci ; 74(12): 1879-1886, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30428006

RESUMO

Increased adiposity is associated with reduced skeletal muscle function in older adults, but the mechanisms underlying this relationship remain unclear. To explore whether skeletal muscle properties track with adiposity, whole-muscle, cellular, and molecular function were examined in relation to adiposity measured at various anatomical levels in healthy older (60-80 years) men and women. Although women had greater absolute and relative body and thigh fat than men, quadriceps muscle attenuation, an index of intramuscular lipid content, was similar between sexes. At the whole-muscle level, greater quadriceps attenuation was associated with reduced knee extensor function in women, but not men. In women, decreased myosin heavy chain I and IIA fiber-specific force was associated with higher intramuscular lipid content, which may be explained, in part, by the reduced myofilament lattice stiffness found in myosin heavy chain IIA fibers. Longer myosin attachment times in myosin heavy chain I fibers from men and women were associated with greater amounts of adipose tissue, suggesting that fat deposits lead to slower myosin-actin cross-bridge kinetics. Our results indicate greater quantities of adipose tissue alter myofilament properties and cross-bridge kinetics, which may partially explain the adiposity-induced decrements in single-fiber and whole-muscle function of older adults, especially women.


Assuntos
Adiposidade/fisiologia , Contração Muscular/fisiologia , Músculo Quadríceps/anatomia & histologia , Músculo Quadríceps/metabolismo , Absorciometria de Fóton , Idoso , Idoso de 80 Anos ou mais , Composição Corporal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/metabolismo , Miofibrilas/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Fatores Sexuais
19.
Am J Physiol Cell Physiol ; 315(5): C744-C756, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30207784

RESUMO

How breast cancer and its treatments affect skeletal muscle is not well defined. To address this question, we assessed skeletal muscle structure and protein expression in 13 women who were diagnosed with breast cancer and receiving adjuvant chemotherapy following tumor resection and 12 nondiseased controls. Breast cancer patients showed reduced single-muscle fiber cross-sectional area and fractional content of subsarcolemmal and intermyofibrillar mitochondria. Drugs commonly used in breast cancer patients (doxorubicin and paclitaxel) caused reductions in myosin expression, mitochondrial loss, and increased reactive oxygen species (ROS) production in C2C12 murine myotube cell cultures, supporting a role for chemotherapeutics in the atrophic and mitochondrial phenotypes. Additionally, concurrent treatment of myotubes with the mitochondrial-targeted antioxidant MitoQ prevented chemotherapy-induced myosin depletion, mitochondrial loss, and ROS production. In patients, reduced mitochondrial content and size and increased expression and oxidation of peroxiredoxin 3, a mitochondrial peroxidase, were associated with reduced muscle fiber cross-sectional area. Our results suggest that chemotherapeutics may adversely affect skeletal muscle in patients and that these effects may be driven through effects of these drugs on mitochondrial content and/or ROS production.


Assuntos
Antineoplásicos/efeitos adversos , Neoplasias da Mama/tratamento farmacológico , Caquexia/genética , Atrofia Muscular/genética , Peroxirredoxina III/genética , Idoso , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Caquexia/induzido quimicamente , Caquexia/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Pessoa de Meia-Idade , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/patologia , Miosinas/genética , Miosinas/metabolismo , Compostos Organofosforados/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia
20.
Exp Gerontol ; 102: 84-92, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29247790

RESUMO

Age-related declines in human skeletal muscle performance may be caused, in part, by decreased responsivity of muscle fibers to calcium (Ca2+). This study examined the contractile properties of single vastus lateralis muscle fibers with various myosin heavy chain (MHC) isoforms (I, I/IIA, IIA and IIAX) across a range of Ca2+ concentrations in 11 young (24.1±1.1years) and 10 older (68.8±0.8years) men and women. The normalized pCa-force curve shifted rightward with age, leading to decreased activation threshold (pCa10) and/or Ca2+ sensitivity (pCa50) for all MHC isoforms examined. In older adults, the slope of the pCa-force curve was unchanged in MHC I-containing fibers (I, I/IIA), but was steeper in MHC II-containing fibers (IIA, IIAX), indicating greater cooperativity compared to young adults. At sub-maximal [Ca2+], specific force was reduced in MHC I-containing fibers, but was minimally decreased in MHC IIA fibers as older adults produced greater specific forces at high [Ca2+] in these fibers. Lessor pCa50 in MHC I fibers independently predicted reduced isokinetic knee extensor power across a range of contractile velocities, suggesting that the Ca2+ response of slow-twitch fibers contributes to whole muscle dysfunction. Our findings show that aging attenuates Ca2+ responsiveness across fiber types and that these cellular alterations may lead to age-related reductions in whole muscle power output.


Assuntos
Envelhecimento/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Contração Muscular , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Força Muscular , Músculo Quadríceps/metabolismo , Adulto , Fatores Etários , Idoso , Feminino , Humanos , Masculino , Cadeias Pesadas de Miosina/metabolismo , Músculo Quadríceps/citologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA