Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep ; 42(12): 113437, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37995679

RESUMO

Head and neck squamous cell carcinomas (HNSCCs) have high mortality and significant treatment-related morbidity. It is vital to discover effective, minimally invasive therapies that improve survival and quality of life. Bitter taste receptors (T2Rs) are expressed in HNSCCs, and T2R activation can induce apoptosis. Lidocaine is a local anesthetic that also activates bitter taste receptor 14 (T2R14). Lidocaine has some anti-cancer effects, but the mechanisms are unclear. Here, we find that lidocaine causes intracellular Ca2+ mobilization through activation of T2R14 in HNSCC cells. T2R14 activation with lidocaine depolarizes mitochondria, inhibits proliferation, and induces apoptosis. Concomitant with mitochondrial Ca2+ influx, ROS production causes T2R14-dependent accumulation of poly-ubiquitinated proteins, suggesting that proteasome inhibition contributes to T2R14-induced apoptosis. Lidocaine may have therapeutic potential in HNSCCs as a topical gel or intratumor injection. In addition, we find that HPV-associated (HPV+) HNSCCs are associated with increased TAS2R14 expression. Lidocaine treatment may benefit these patients, warranting future clinical studies.


Assuntos
Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Humanos , Paladar/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Lidocaína/farmacologia , Qualidade de Vida , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Apoptose
2.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35455449

RESUMO

T2R bitter taste receptors in airway motile cilia increase ciliary beat frequency (CBF) and nitric oxide (NO) production. Polymorphisms in some T2Rs are linked to disease outcomes in chronic rhinosinusitis (CRS) and cystic fibrosis (CF). We examined the expression of cilia T2Rs during the differentiation of human nasal epithelial cells grown at air-liquid interface (ALI). The T2R expression increased with differentiation but did not vary between CF and non-CF cultures. Treatment with Pseudomonas aeruginosa flagellin decreased the expression of diphenhydramine-responsive T2R14 and 40, among others. Diphenhydramine increased both NO production, measured by fluorescent dye DAF-FM, and CBF, measured via high-speed imaging. Increases in CBF were disrupted after flagellin treatment. Diphenhydramine impaired the growth of lab and clinical strains of P. aeruginosa, a major pathogen in CF and CF-related CRS. Diphenhydramine impaired biofilm formation of P. aeruginosa, measured via crystal violet staining, as well as the surface attachment of P. aeruginosa to CF airway epithelial cells, measured using colony-forming unit counting. Because the T2R agonist diphenhydramine increases NO production and CBF while also decreasing bacterial growth and biofilm production, diphenhydramine-derived compounds may have potential clinical usefulness in CF-related CRS as a topical therapy. However, utilizing T2R agonists as therapeutics within the context of P. aeruginosa infection may require co-treatment with anti-inflammatories to enhance T2R expression.

3.
Mol Cancer Res ; 20(7): 1096-1107, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35320362

RESUMO

The transition metal copper (Cu) is an essential micronutrient required for development and proliferation, but the molecular mechanisms by which Cu contributes to these processes is not fully understood. Although traditionally studied as a static cofactor critical for the function of Cu-dependent enzymes, an expanding role for Cu is emerging to include its novel function as a dynamic mediator of signaling processes through the direct control of protein kinase activity. We now appreciate that Cu directly binds to and influences MEK1/2 and ULK1/2 kinase activity, and show here that reductions in MAPK and autophagic signaling are associated with dampened growth and survival of oncogenic BRAF-driven lung adenocarcinoma cells upon loss of Ctr1. Efficient autophagy, clonogenic survival, and tumorigenesis of BRAF-mutant cells required ULK1 Cu-binding. Although treatment with canonical MAPK inhibitors resulted in the upregulation of protective autophagy, mechanistically, the Cu chelator tetrathiomolybdate (TTM) was sufficient to target both autophagic and MAPK signaling as a means to blunt BRAF-driven tumorigenic properties. These findings support leveraging Cu chelation with TTM as an alternative therapeutic strategy to impair autophagy and MAPK signaling. As traditional MAPK monotherapies initiate autophagy signaling and promote cancer cell survival. IMPLICATIONS: We establish that copper chelation therapy inhibits both autophagy and MAPK signaling in BRAFV600E-driven lung adenocarcinoma, thus overcoming the upregulation of protective autophagy elicited by canonical MAPK pathway inhibitors.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Autofagia , Linhagem Celular Tumoral , Quelantes/farmacologia , Quelantes/uso terapêutico , Cobre/química , Cobre/metabolismo , Cobre/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/metabolismo
4.
Mol Oncol ; 16(7): 1474-1492, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34717036

RESUMO

Better management of head and neck squamous cell carcinomas (HNSCCs) requires a clearer understanding of tumor biology and disease risk. Bitter taste receptors (T2Rs) have been studied in several cancers, including thyroid, salivary, and GI, but their role in HNSCC has not been explored. We found that HNSCC patient samples and cell lines expressed functional T2Rs on both the cell and nuclear membranes. Bitter compounds, including bacterial metabolites, activated T2R-mediated nuclear Ca2+ responses leading to mitochondrial depolarization, caspase activation, and ultimately apoptosis. Buffering nuclear Ca2+ elevation blocked caspase activation. Furthermore, increased expression of T2Rs in HNSCCs from The Cancer Genome Atlas is associated with improved overall survival. This work suggests that T2Rs are potential biomarkers to predict outcomes and guide treatment selection, may be leveraged as therapeutic targets to stimulate tumor apoptosis, and may mediate tumor-microbiome crosstalk in HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Paladar , Apoptose , Linhagem Celular , Neoplasias de Cabeça e Pescoço/genética , Humanos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA