Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 383(6681): 433-438, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38271503

RESUMO

Mutualisms often define ecosystems, but they are susceptible to human activities. Combining experiments, animal tracking, and mortality investigations, we show that the invasive big-headed ant (Pheidole megacephala) makes lions (Panthera leo) less effective at killing their primary prey, plains zebra (Equus quagga). Big-headed ants disrupted the mutualism between native ants (Crematogaster spp.) and the dominant whistling-thorn tree (Vachellia drepanolobium), rendering trees vulnerable to elephant (Loxodonta africana) browsing and resulting in landscapes with higher visibility. Although zebra kills were significantly less likely to occur in higher-visibility, invaded areas, lion numbers did not decline since the onset of the invasion, likely because of prey-switching to African buffalo (Syncerus caffer). We show that by controlling biophysical structure across landscapes, a tiny invader reconfigured predator-prey dynamics among iconic species.


Assuntos
Formigas , Equidae , Cadeia Alimentar , Leões , Mirmecófitas , Simbiose , Animais , Formigas/fisiologia , Elefantes , Búfalos
2.
Mol Ecol ; 32(24): 6924-6938, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37873915

RESUMO

Environmental circumstances shaping soil microbial communities have been studied extensively. However, due to disparate study designs, it has been difficult to resolve whether a globally consistent set of predictors exists, or context-dependency prevails. Here, we used a network of 18 grassland sites (11 of those containing regional plant productivity gradients) to examine (i) if similar abiotic or biotic factors predict both large-scale (across sites) and regional-scale (within sites) patterns in bacterial and fungal community composition, and (ii) if microbial community composition differs consistently at two levels of regional plant productivity (low vs. high). Our results revealed that bacteria were associated with particular soil properties (such as base saturation) and both bacteria and fungi were associated with plant community composition across sites and within the majority of sites. Moreover, a discernible microbial community signal emerged, clearly distinguishing high and low-productivity soils across different grasslands independent of their location in the world. Hence, regional productivity differences may be typified by characteristic soil microbial communities across the grassland biome. These results could encourage future research aiming to predict the general effects of global changes on soil microbial community composition in grasslands and to discriminate fertile from infertile systems using generally applicable microbial indicators.


Assuntos
Pradaria , Microbiota , Microbiologia do Solo , Microbiota/genética , Fungos/genética , Bactérias/genética , Plantas/microbiologia , Solo
3.
Ecology ; 104(1): e3880, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36199213

RESUMO

Cooperative interactions may frequently be reinforced by "partner fidelity feedback," in which high- or low-quality partners drive positive feedbacks with high or low benefits for the host, respectively. Benefits of plant-animal mutualisms for plants have been quantified almost universally in terms of growth or reproduction, but these are only two of many sinks to which a host-plant allocates its resources. By investigating how partners to host-plants impact two fundamental plant resources, carbon and water, we can better characterize plant-partner fidelity and understand how plant-partner mutualisms may be modulated by resource dynamics. In Laikipia, Kenya, four ant species compete for Acacia drepanolobium host-plants. These ants differ in multiple traits, from nectar consumption to host-plant protection. Using a 5-year ant removal experiment, we compared carbon fixation, leaf water status, and stem non-structural carbohydrate concentrations for adult ant-plants with and without ant partners. Removal treatments showed that the ants differentially mediate tree carbon and/or water resources. All three ant species known to be aggressive against herbivores were linked to benefits for host-plant resources, but only the two species that defend but do not prune the host, Crematogaster mimosae and Tetraponera penzigi, increased tree carbon fixation. Of these two species, only the nectivore C. mimosae increased tree simple sugars. Crematogaster nigriceps, which defends the tree but also castrates flowers and prunes meristems, was linked only to lower tree water stress approximated by pre-dawn leaf water potential. In contrast to those defensive ants, Crematogaster sjostedti, a poor defender that displaces other ants, was linked to lower tree carbon fixation. Comparing the effects of the four ant species across control trees suggests that differential ant occupancy drives substantial differences in carbon and water supply among host trees. Our results highlight that ant partners can positively or negatively impact carbon and/or water relations for their host-plant, and we discuss the likelihood that carbon- and water-related partner fidelity feedback loops occur across ant-plant mutualisms.


Assuntos
Acacia , Formigas , Simbiose , Animais , Herbivoria
4.
Ecol Lett ; 24(5): 1052-1062, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33745197

RESUMO

Invasive ants shape assemblages and interactions of native species, but their effect on fundamental ecological processes is poorly understood. In East Africa, Pheidole megacephala ants have invaded monodominant stands of the ant-tree Acacia drepanolobium, extirpating native ant defenders and rendering trees vulnerable to canopy damage by vertebrate herbivores. We used experiments and observations to quantify direct and interactive effects of invasive ants and large herbivores on A. drepanolobium photosynthesis over a 2-year period. Trees that had been invaded for ≥ 5 years exhibited 69% lower whole-tree photosynthesis during key growing seasons, resulting from interaction between invasive ants and vertebrate herbivores that caused leaf- and canopy-level photosynthesis declines. We also surveyed trees shortly before and after invasion, finding that recent invasion induced only minor changes in leaf physiology. Our results from individual trees likely scale up, highlighting the potential of invasive species to alter ecosystem-level carbon fixation and other biogeochemical cycles.


Assuntos
Acacia , Formigas , Animais , Ciclo do Carbono , Ecossistema , Simbiose
5.
Crit Care Med ; 49(3): 437-448, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33555777

RESUMO

OBJECTIVES: To describe the outcomes of hospitalized patients in a multicenter, international coronavirus disease 2019 registry. DESIGN: Cross-sectional observational study including coronavirus disease 2019 patients hospitalized with laboratory-confirmed severe acute respiratory syndrome coronavirus-2 infection between February 15, 2020, and November 30, 2020, according to age and type of organ support therapies. SETTING: About 168 hospitals in 16 countries within the Society of Critical Care Medicine's Discovery Viral Infection and Respiratory Illness University Study coronavirus disease 2019 registry. PATIENTS: Adult hospitalized coronavirus disease 2019 patients who did and did not require various types and combinations of organ support (mechanical ventilation, renal replacement therapy, vasopressors, and extracorporeal membrane oxygenation). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Primary outcome was hospital mortality. Secondary outcomes were discharge home with or without assistance and hospital length of stay. Risk-adjusted variation in hospital mortality for patients receiving invasive mechanical ventilation was assessed by using multilevel models with hospitals as a random effect, adjusted for age, race/ethnicity, sex, and comorbidities. Among 20,608 patients with coronavirus disease 2019, the mean (± sd) age was 60.5 (±17), 11,1887 (54.3%) were men, 8,745 (42.4%) were admitted to the ICU, and 3,906 (19%) died in the hospital. Hospital mortality was 8.2% for patients receiving no organ support (n = 15,001). The most common organ support therapy was invasive mechanical ventilation (n = 5,005; 24.3%), with a hospital mortality of 49.8%. Mortality ranged from 40.8% among patients receiving only invasive mechanical ventilation (n =1,749) to 71.6% for patients receiving invasive mechanical ventilation, vasoactive drugs, and new renal replacement therapy (n = 655). Mortality was 39% for patients receiving extracorporeal membrane oxygenation (n = 389). Rates of discharge home ranged from 73.5% for patients who did not require organ support therapies to 29.8% for patients who only received invasive mechanical ventilation, and 8.8% for invasive mechanical ventilation, vasoactive drugs, and renal replacement; 10.8% of patients older than 74 years who received invasive mechanical ventilation were discharged home. Median hospital length of stay for patients on mechanical ventilation was 17.1 days (9.7-28 d). Adjusted interhospital variation in mortality among patients receiving invasive mechanical ventilation was large (median odds ratio 1.69). CONCLUSIONS: Coronavirus disease 2019 prognosis varies by age and level of organ support. Interhospital variation in mortality of mechanically ventilated patients was not explained by patient characteristics and requires further evaluation.


Assuntos
COVID-19/terapia , Resultados de Cuidados Críticos , Mortalidade Hospitalar , Hospitalização , Alta do Paciente/estatística & dados numéricos , Sistema de Registros , Adulto , Idoso , Oxigenação por Membrana Extracorpórea , Feminino , Humanos , Tempo de Internação/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Terapia de Substituição Renal , Respiração Artificial , Vasoconstritores
6.
Ecology ; 102(2): e03230, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33098658

RESUMO

Biological invasions can lead to the reassembly of communities and understanding and predicting the impacts of exotic species on community structure and functioning are a key challenge in ecology. We investigated the impact of a predatory species of invasive ant, Pheidole megacephala, on the structure and function of a foundational mutualism between Acacia drepanolobium and its associated acacia-ant community in an East African savanna. Invasion by P. megacephala was associated with the extirpation of three extrafloral nectar-dependent Crematogaster acacia ant species and strong increases in the abundance of a competitively subordinate and locally rare acacia ant species, Tetraponera penzigi, which does not depend on host plant nectar. Using a combination of long-term monitoring of invasion dynamics, observations and experiments, we demonstrate that P. megacephala directly and indirectly facilitates T. penzigi by reducing the abundance of T. penzigi's competitors (Crematogaster spp.), imposing recruitment limitation on these competitors, and generating a landscape of low-reward host plants that favor colonization and establishment by the strongly dispersing T. penzigi. Seasonal variation in use of host plants by P. megacephala may further increase the persistence of T. penzigi colonies in invaded habitat. The persistence of the T. penzigi-A. drepanolobium symbiosis in invaded areas afforded host plants some protection against herbivory by elephants (Loxodonta africana), a key browser that reduces tree cover. However, elephant damage on T. penzigi-occupied trees was higher in invaded than in uninvaded areas, likely owing to reduced T. penzigi colony size in invaded habitats. Our results reveal the mechanisms underlying the disruption of this mutualism and suggest that P. megacephala invasion may drive long-term declines in tree cover, despite the partial persistence of the ant-acacia symbiosis in invaded areas.


Assuntos
Acacia , Formigas , Animais , Herbivoria , Quênia , Simbiose
7.
Ecology ; 100(6): e02712, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31095732

RESUMO

Many tropical plants are defended by ants, and the costs and benefits of these mutualisms can vary across gradients of herbivory, soil fertility, latitude, and other environmental factors. Yet despite an abundant literature documenting thermal constraints on ant activity and behavior, we know little about whether temperature variation can influence the benefits conferred by ants to plants. We evaluated the effects of dawn-to-dusk fluctuations in temperature on patrolling and aggressive behavior in four arboreal ant mutualists of Acacia drepanolobium trees in central Kenya. We found that ant aggressive behavior significantly increased with branch surface temperature, primarily in the two most aggressive ant species: Crematogaster mimosae and C. nigriceps workers attacked a simulated herbivore at higher rates as surface temperature rose. In a browsing experiment, we found that goats browsed more frequently and for longer durations on C. mimosae-defended trees during cooler times of day, while goat browsing on plants from which ants had been removed was not affected by temperature. Our study demonstrates temperature-dependence in the efficacy of ant defense against herbivory and suggests that these ant-plants may be more vulnerable to herbivory during cooler hours of the day, when many native browsers are most active.


Assuntos
Acacia , Formigas , Animais , Herbivoria , Quênia , Simbiose , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA