RESUMO
Because it can lead to retaliatory killing, livestock depredation by large carnivores is among the foremost threats to carnivore conservation, and it severely impacts human well-being worldwide. Ongoing climate change can amplify these human-wildlife conflicts, but such issues are largely unexplored, though are becoming increasingly recognized. Here, we assessed how the availability of primary resources and wild prey interact to shape large carnivore selection for livestock rather than wild prey (i.e., via prey switching or apparent competition). Specifically, we combined remotely sensed estimates of primary resources (i.e., water availability and primary productivity), wild prey movement, and 7 years (2015-2021) of reports for livestock depredation by African lions (Panthera leo) in the Makgadikgadi Pans ecosystem, Botswana. Although livestock depredation did not vary between wet versus dry seasons, analyses at finer temporal scales revealed higher incidences of livestock depredation when primary production, water availability, and wild prey availability were lower, though the effects of wild prey availability were mediated by water availability. Increased precipitation also amplified livestock depredation events despite having no influence on wild prey availability. Our results suggest that livestock depredation is influenced by the diverse responses of livestock, wild prey, and lions to primary resource availability, a driver that is largely overlooked or oversimplified in studies of human-carnivore conflict. Our findings provide insight into tailoring potential conflict mitigation strategies to fine-scale changes in resource conditions to efficiently reduce conflict and support human livelihoods.
RESUMO
Comparative studies suggest remarkable similarities among food webs across habitats, including systematic changes in their structure with diversity and complexity (scale-dependence). However, historic aboveground terrestrial food webs (ATFWs) have coarsely grouped plants and insects such that these webs are generally small, and herbivory is disproportionately under-represented compared to vertebrate predator-prey interactions. Furthermore, terrestrial herbivory is thought to be structured by unique processes compared to size-structured feeding in other systems. Here, we present the richest ATFW to date, including approximately 580 000 feeding links among approximately 3800 taxonomic species, sourced from approximately 27 000 expert-vetted interaction records annotated as feeding upon one of six different resource types: leaves, flowers, seeds, wood, prey and carrion. By comparison to historical ATFWs and null ecological hypotheses, we show that our temperate forest web displays a potentially unique structure characterized by two properties: (i) a large fraction of carnivory interactions dominated by a small number of hyper-generalist, opportunistic bird and bat predators; and (ii) a smaller fraction of herbivory interactions dominated by a hyper-rich community of insects with variably sized but highly specific diets. We attribute our findings to the large-scale, even resolution of vertebrate, insect and plant guilds in our food web.This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.
Assuntos
Cadeia Alimentar , Herbivoria , Insetos , Animais , Insetos/fisiologia , Florestas , Aves/fisiologiaRESUMO
Pesticides have well-documented negative consequences to control crop pests, and natural predators are alternatives and can provide an ecosystem service as biological control agents. However, there remains considerable uncertainty regarding whether such biological control can be a widely applicable solution, especially given ongoing climatic variation and climate change. Here, we performed a meta-analysis focused on field studies with natural predators to explore broadly whether and how predators might control pests and in turn increase yield. We also contrasted across studies pest suppression by a single and multiple predators and how climate influence biological control. Predators reduced pest populations by 73% on average, and increased crop yield by 25% on average. Surprisingly, the impact of predators did not depend on whether there were many or a single predator species. Precipitation seasonality was a key climatic influence on biological control: as seasonality increased, the impact of predators on pest populations increased. Taken together, the positive contribution of predators in controlling pests and increasing yield, and the consistency of such responses in the face of precipitation variability, suggest that biocontrol has the potential to be an important part of pest management and increasing food supplies as the planet precipitation patterns become increasingly variable.
Assuntos
Ecossistema , Praguicidas , Mudança Climática , IncertezaRESUMO
Wide-ranging carnivores experience tradeoffs between dynamic resource availabilities and heterogeneous risks from humans, with consequences for their ecological function and conservation outcomes. Yet, research investigating these tradeoffs across large carnivore distributions is rare. We assessed how resource availability and anthropogenic risks influence the strength of lion (Panthera leo) responses to disturbance using data from 31 sites across lions' contemporary range. Lions avoided human disturbance at over two-thirds of sites, though their responses varied depending on site-level characteristics. Lions were more likely to exploit human-dominated landscapes where resources were limited, indicating that resource limitation can outweigh anthropogenic risks and might exacerbate human-carnivore conflict. Lions also avoided human impacts by increasing their nocturnal activity more often at sites with higher production of cattle. The combined effects of expanding human impacts and environmental change threaten to simultaneously downgrade the ecological function of carnivores and intensify human-carnivore conflicts, escalating extinction risks for many species.
Assuntos
Leões , Humanos , Animais , Bovinos , Leões/fisiologia , Comportamento PredatórioRESUMO
Amid a growing disciplinary commitment to inclusion in ecology and evolutionary biology (EEB), it is critical to consider how the use of scientific language can harm members of our research community. Here, we outline a path for identifying and revising harmful terminology to foster inclusion in EEB.
Assuntos
Ecologia , Terminologia como Assunto , Diversidade, Equidade, InclusãoRESUMO
Predation is a fundamental ecological process that shapes communities and drives evolutionary dynamics. As the world rapidly urbanizes, it is critical to understand how human perturbations alter predation and meat consumption across taxa. We conducted a meta-analysis to quantify the effects of urban environments on three components of trophic ecology in predators: dietary species richness, dietary evenness and stable isotopic ratios (IRs) (δ13C and δ15N IR). We evaluated whether the intensity of anthropogenic pressure, using the human footprint index (HFI), explained variation in effect sizes of dietary attributes using a meta-regression. We calculated Hedges' g effect sizes from 44 studies including 11 986 samples across 40 predatory species in 39 cities globally. The direction and magnitude of effect sizes varied among predator taxa with reptilian diets exhibiting the most sensitivity to urbanization. Effect sizes revealed that predators in cities had comparable diet richness, evenness and nitrogen ratios, though carbon IRs were more enriched in cities. We found that neither the 1993 nor 2009 HFI editions explained effect size variation. Our study provides, to our knowledge, the first assessment of how urbanization has perturbed predator-prey interactions for multiple taxa at a global scale. We conclude that the functional role of predators is conserved in cities and urbanization does not inherently relax predation, despite diets broadening to include anthropogenic food sources such as sugar, wheat and corn.
Assuntos
Comportamento Predatório , Urbanização , Animais , Cidades , Dieta , Cadeia Alimentar , Humanos , VertebradosRESUMO
Wildlife respond to human presence by adjusting their temporal niche, possibly modifying encounter rates among species and trophic dynamics that structure communities. We assessed wildlife diel activity responses to human presence and consequential changes in predator-prey overlap using 11,111 detections of 3 large carnivores and 11 ungulates across 21,430 camera trap-nights in West Africa. Over two-thirds of species exhibited diel responses to mainly diurnal human presence, with ungulate nocturnal activity increasing by 7.1%. Rather than traditional pairwise predator-prey diel comparisons, we considered spatiotemporally explicit predator access to several prey resources to evaluate community-level trophic responses to human presence. Although leopard prey access was not affected by humans, lion and spotted hyena access to three prey species significantly increased when prey increased their nocturnal activity to avoid humans. Human presence considerably influenced the composition of available prey, with implications for prey selection, demonstrating how humans perturb ecological processes via behavioral modifications.