Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37513052

RESUMO

Trichloroethylene (TCE) is a prominent groundwater pollutant due to its stability, widespread contamination, and negative health effects upon human exposure; thus, an immense need exists for enhanced environmental remediation techniques. Temperature-responsive domains and catalyst incorporation in membrane domains bring significant advantages for toxic organic decontamination. In this study, hollow fiber membranes (HFMs) were functionalized with stimuli-responsive poly-N-isopropylacrylamide (PNIPAm), poly-methyl methacrylate (PMMA), and catalytic zero-valent iron/palladium (Fe/Pd) for heightened reductive degradation of such pollutants, utilizing methyl orange (MO) as a model compound. By utilizing PNIPAm's transition from hydrophilic to hydrophobic expression above the LCST of 32 °C, increased pollutant diffusion and adsorption to the catalyst active sites were achieved. PNIPAm-PMMA hydrogels exhibited 11.5× and 10.8× higher equilibrium adsorption values for MO and TCE, respectively, when transitioning from 23 °C to 40 °C. With dip-coated PNIPAm-PMMA-functionalized HFMs (weight gain: ~15%) containing Fe/Pd nanoparticles (dp~34.8 nm), surface area-normalized rate constants for batch degradation were determined, resulting in a 30% and 420% increase in degradation efficiency above 32 °C for MO and TCE, respectively, due to enhanced sorption on the hydrophobic PNIPAm domain. Overall, with functionalized membranes containing superior surface area-to-volume ratios and enhanced sorption sites, efficient treatment of high-volume contaminated water can be achieved.

2.
Sep Sci Technol ; 58(6): 1202-1236, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063489

RESUMO

In recent years, significant advances have been made in the field of functionalized membranes. With the functionalization using various materials, such as polymers and enzymes, membranes can exhibit property changes in response to an environmental stimulation, such as heat, light, ionic strength, or pH. The resulting responsive nature allows for an increased breadth of membrane uses, due to the developed functionalization properties, such as smart-gating filtration for size-selective water contaminant removal, self-cleaning antifouling surfaces, increased scalability options, and highly sensitive molecular detection. In this review, new advances in both fabrication and applications of functionalized membranes are reported and summarized, including temperature-responsive, pH-responsive, light-responsive, enzyme-functionalized, and two-dimensional material-functionalized membranes. Specific emphasis was given to the most recent technological improvements, current limitations, advances in characterization techniques, and future directions for the field of functionalized membranes.

3.
Sep Purif Technol ; 3202023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303990

RESUMO

A nanocomposite membrane incorporating reactive Pd-Fe nanoparticles (NPs) was developed to remediate chlorinated aliphatic hydrocarbons (CAHs) from groundwater. Other than recapturing the produced Fen+ for in-situ regeneration, the functionalized polyanions prevented NPs agglomeration and resulting in a spherical Fe0 core (55 nm, O/Fe = 0.05) and an oxidized shell (4 nm, O/Fe = 1.38). The reactive membranes degraded 92% of target CAHs with a residence time of 1.7 seconds. After long-term treatment and regeneration, reusability was confirmed through recovered reactivity, recurrence of Fe0 in X-ray photoelectron spectroscopy, and >96% remaining of Fe and Pd. The total cost (adjusted present value for 20 years) was estimated to be 13.9% lower than the granular activated carbon system, following an EPA work breakdown structure-based cost model. However, non-target CAHs from groundwater can compete for active sites, leading to decreased surface-area normalized dechlorination rate (ksa) by 28.2-79.9%. A hybrid nanofiltration (NF)/reactive membrane was proposed to selectively intercept larger competitors, leading to 54% increased dechlorination efficiency and 1.3 to 1.9-fold enlarged ksa. Overall, the practical viability of the developed reactive membranes was demonstrated by the stability, reusability, and cost advantages, while the optional NF strategy could alleviate competitive degradation towards complex water chemistry.

4.
Chem Eng J ; 433(Pt 2)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36505940

RESUMO

Emerging perfluoroalkyl and polyfluoroalkyl substances contaminate waters at trace concentrations, thus rapid and selective adsorbents are pivotal to mitigate the consequent energy-intensive and time-consuming issues in remediation. In this study, coal combustion residuals-fly ash was modified (FA-SCA) to overcome the universal trade-off between high adsorption capacity and fast kinetics. FA-SCA presented rapid adsorption (teq = 2 min) of PFOX (perfluorooctanoic acid and perfluorooctanesulfonic acid, collectively), where the dynamic adsorption capacity (qdyn = qm/teq) was 2-3 orders of magnitude higher than that of benchmark activated carbons and anion-exchange resins. Investigated by advanced characterization and kinetic models, the fast kinetics and superior qdyn are attributed to (1) elevated external diffusion driven by the submicron particle size; (2) enhanced intraparticle diffusion caused by the developed mesoporous structure (Vmeso/Vmicro = 8.1); (3) numerous quaternary ammonium anion-exchange sites (840 µmol/g), and (4) appropriate adsorption affinity (0.031 L/µmol for PFOS, and 0.023 L/µmol for PFOA). Since the adsorption was proven to be a synergistic process of electrostatic and hydrophobic interactions, effective adsorption ([PFOX]ini = 1.21 µM, concentration levels of highly-contaminant-sites) was obtained at conventional natural water chemistries. High selectivity (>85.4% removal) was also achieved with organic/inorganic competitors, especially compounds with partly similar molecular structures to PFOX. In addition, >90% PFOX was removed consistently during five cycles in mild regeneration conditions (pH 12 and 50 °C). Overall, FA-SCA showed no leaching issues of toxic metals and exhibits great potential in both single-adsorption processes and treatment train systems.

5.
Commun Mater ; 3(1)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406238

RESUMO

The airborne nature of coronavirus transmission makes it critical to develop new barrier technologies that can simultaneously reduce aerosol and viral spread. Here, we report nanostructured membranes with tunable thickness and porosity for filtering coronavirus-sized aerosols, combined with antiviral enzyme functionalization that can denature spike glycoproteins of the SARS-CoV-2 virus in low-hydration environments. Thin, asymmetric membranes with subtilisin enzyme and methacrylic functionalization show more than 98.90% filtration efficiency for 100-nm unfunctionalized and protein-functionalized polystyrene latex aerosol particles. Unfunctionalized membranes provided a protection factor of 540 ± 380 for coronavirus-sized particle, above the Occupational Safety and Health Administration's standard of 10 for N95 masks. SARS-CoV-2 spike glycoprotein on the surface of coronavirus-sized particles was denatured in 30 s by subtilisin enzyme-functionalized membranes with 0.02-0.2% water content on the membrane surface.

6.
J Memb Sci ; 6442022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35911189

RESUMO

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are emerging contaminants in water and soil. Electrospun membranes with open structure could treat PFAS in a gravity-driven mode with ultralow pressure needs. The electrospun ultrathin fibers (67 ± 27 nm) was prepared for the enhanced specific surface area; where polyvinylidene fluoride (PVDF) backbones and the grafted quaternary ammonium moieties (QA; PVDF-g-QA membranes) provided both hydrophobicity and anion-exchange ability (electrostatic interaction). High affinity towards the perfluorooctanoic acid (PFOA)/perfluorooctanesulfonic acid (PFOS) molecules (denoted as PFOX collectively) was observed, and >95% PFOX was removed from synthetic groundwater with a flux of 32.3 Lm-2h-1 at ΔPo = 313 Pa. With a higher octanol/water partitioning coefficient (Log Kow = 6.3) and close dispersion interaction parameter to the membrane backbones (16.6% difference in δd), the effective PFOS removal remained under alkaline and high conductivity conditions due to the intensive hydrophobic interaction compared to that of PFOA. Long-term studies exhibited >90% PFOX removal in an 8 h test with a capacity of 258 L/m2. Under mild regeneration conditions, PFOA and PFOS were concentrated by 35-fold and 39-fold, respectively. Overall, the gravity-driven electrospun PVDF-g-QA membranes, with adsorptive effectiveness and ease of regeneration, showed great potential in PFAS remediation.

7.
J Memb Sci ; 5992020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32095035

RESUMO

Perfluorochemicals (PFCs) are emerging contaminants in various water sources. Responsive polymers provide a new avenue for PFC adsorption/desorption from water. Poly-N-isopropylacrylamide's (PNIPAm's) temperature-responsive behavior and hydrophilic/hydrophobic transition is leveraged for reversible adsorption and desorption of PFCs. Adsorption of PFOA (perfluoro-octanoic acid) onto PNIPAm hydrogels yielded Freundlich distribution coefficients (Kd) of 0.073 L/g at 35 °C (above LCST) and 0.026 L/g at 22°C. Kinetic studies yielded second order rate constants (k2) of 0.012 g/mg/h for adsorption and 12.6 g/mg/h for desorption, with initial rates of 28 mg/g/h and 41 mg/g/h, respectively. Interaction parameters of PNIPAm's functional groups in its different conformational states, as well as the hydrophobic fluorinated carbon tails and hydrophilic head groups of PFOA are used to describe relative adsorption. Polyvinylidene difluoride (PVDF) provides a robust membrane structure for the commercial viability of polymeric adsorbents. Temperature swing adsorption of PFOA using PNIPAm functionalized PVDF membrane pores showed consistent adsorption and desorption capacity over 5 cycles. PFOA desorption percentage of 60% was obtained in pure water at temperatures below PNIPAm's lower critical solution temperature (LCST) while 13% desorption was obtained at temperatures above the LCST, thus showing the importance of the LCST on desorption performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA