RESUMO
BACKGROUND: Despite the increased use of mechanical thrombectomy (MT) in recent years, there remains a lack of research on in-hospital mortality rates following the procedure, the primary factors influencing these rates, and the potential for predicting them. This study aimed to utilize interpretable machine learning (ML) to help clarify these uncertainties. METHODS: This retrospective study involved patients with anterior circulation large vessel occlusion (LVO)-related ischemic stroke who underwent MT. The patient division was made into two groups: (I) the in-hospital death group, referred to as miserable outcome, and (II) the in-hospital survival group, or favorable outcome. Python 3.10.9 was utilized to develop the machine learning models, which consisted of two types based on input features: (I) the Pre-MT model, incorporating baseline features, and (II) the Post-MT model, which included both baseline and MT-related features. After a feature selection process, the models were trained, internally evaluated, and tested, after which interpretation frameworks were employed to clarify the decision-making processes. RESULTS: This study included 602 patients with a median age of 76 years (interquartile range (IQR) 65-83), out of which 54% (n = 328) were female, and 22% (n = 133) had miserable outcomes. Selected baseline features were age, baseline National Institutes of Health Stroke Scale (NIHSS) value, neutrophil-to-lymphocyte ratio (NLR), international normalized ratio (INR), the type of the affected vessel ('Vessel type'), peripheral arterial disease (PAD), baseline glycemia, and premorbid modified Rankin scale (pre-mRS). The highest odds ratio of 4.504 was observed with the presence of peripheral arterial disease (95% confidence interval (CI), 2.120-9.569). The Pre-MT model achieved an area under the curve (AUC) value of around 79% utilizing these features, and the interpretable framework discovered the baseline NIHSS value as the most influential factor. In the second data set, selected features were the same, excluding pre-mRS and including puncture-to-procedure-end time (PET) and onset-to-puncture time (OPT). The AUC value of the Post-MT model was around 84% with age being the highest-ranked feature. CONCLUSIONS: This study demonstrates the moderate to strong effectiveness of interpretable machine learning models in predicting in-hospital mortality following mechanical thrombectomy for ischemic stroke, with AUCs of 0.792 for the Pre-MT model and 0.837 for the Post-MT model. Key predictors included patient age, baseline NIHSS, NLR, INR, occluded vessel type, PAD, baseline glycemia, pre-mRS, PET, and OPT. These findings provide valuable insights into risk factors and could improve post-procedural patient management.
RESUMO
BACKGROUND: as a relatively high number of ST-segment elevation myocardial infarction (STEMI) patients develop major adverse cardiovascular events (MACE) following percutaneous coronary intervention (PCI), our aim was to determine the significance, and possible predictive value of QRS complex width and ST-segment elevation. METHODS: our patient sample included 200 PCI-treated STEMI patients, which were divided into two groups based on the following duration of symptoms: (I) less than 6 h, and (II) 6 to 12 h. For every patient, an ECG was performed at six different time points, patients were followed for up to six years for the occurrence of MACE. RESULTS: the mean age was 60.6 ± 11.39 years, and 142 (71%) were male. The 6-12 h group had significantly wider QRS complex, higher ST-segment elevation, lower prevalence of ST-segment resolution as well as MACE prevalence (p < 0.05). ECG parameters, QRS width, and magnitude of ST-segment elevation were proved to be independent significant predictors of MACE in all measured time points (p < 0.05). Even after controlling for biomarkers of myocardial injury, these ECG parameters remained statistically significant predictors of MACE (p < 0.05). CONCLUSION: our study highlights that wider QRS complex and a more pronounced ST-segment elevation are associated with longer total ischemic time and higher risk of long-term MACE.
RESUMO
BACKGROUND: Few previous studies indicated the role of oxidative stress in the pathogenesis of childhood idiopathic thrombocytopenic purpura (ITP), but there are little data regarding changes in redox balance in different forms of the disease, and changes after therapeutic procedures. We aimed to investigate the values of pro-oxidants and antioxidative capacity in various forms of ITP before and after the applying therapy. MATERIALS AND METHODS: The research included 102 children, classified into the following groups: (1) newly diagnosed ITP (ndITP), (2) persistent ITP, (3) chronic ITP (chITP), and (4) control groups: (A) healthy control and (B) previously experienced ITP-healthy children who had been suffering from ITP earlier. During the clinical assessment, a blood sample was taken from the patients, from which the value of pro-oxidants (index of lipid peroxidation measured as TBARS, nitrites [NO2 -], as measurement of nitric oxide [NO] production, superoxide anion radical [O2 -], and hydrogen peroxide [H2O2]) and the capacity of antioxidant protection (activity of superoxide dismutase and catalase, and quantity of reduced glutathione) were determined spectrophotometrically. RESULTS: Our results demonstrated that values of pro-oxidants, especially reflected through the TBARS and O2 -, were the highest in the ndITP and exacerbated chITP groups. Also, the activity of the endogenous antioxidative defense system was the lowest in these groups. Intravenous immunoglobulin therapy in the ndITP group exerted the most prominent effect on the redox balance. CONCLUSION: It can be concluded that severity and exacerbation of the ITP are closely related to the redox status.
Assuntos
Púrpura Trombocitopênica Idiopática , Criança , Humanos , Substâncias Reativas com Ácido Tiobarbitúrico , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Antioxidantes , Oxirredução , SuperóxidosRESUMO
This study evaluated the effect of sacubtril/valsartan on cardiac remodeling, molecular and cellular adaptations in experimental (rat) model of hypertension-induced hypertrophic cardiomyopathy. Thirty Wistar Kyoto rats, 10 healthy (control) and 20 rats with confirmed hypertension-induced hypertrophic cardiomyopathy (HpCM), were used for this study. The HpCM group was further subdivided into untreated and sacubitril/valsartan-treated groups. Myocardial structure and function were assessed using echocardiography, Langendorff's isolated heart experiment, blood sampling and qualitative polymerase chain reaction. Echocardiographic examinations revealed protective effects of sacubitril/valsartan by improving left ventricular internal diameter in systole and diastole and fractional shortening. Additionally, sacubitril/valsartan treatment decreased systolic and diastolic blood pressures in comparison with untreated hypertensive rats. Moreover, sacubitril/valsartan treatment reduced oxidative stress and apoptosis (reduced expression of Bax and Cas9 genes) compared to untreated rats. There was a regular histomorphology of cardiomyocytes, interstitium, and blood vessels in treated rats compared to untreated HpCM rats which expressed hypertrophic cardiomyocytes, with polymorphic nuclei, prominent nucleoli and moderately dilated interstitium. In experimental model of hypertension-induced hypertrophic cardiomyopathy, sacubitril/valsartan treatment led to improved cardiac structure, haemodynamic performance, and reduced oxidative stress and apoptosis. Sacubitril/valsartan thus presents as a potential therapeutic strategy resulted in hypertension-induced hypertrophic cardiomyopathy.
Assuntos
Cardiomiopatia Hipertrófica , Hipertensão , Ratos , Animais , Tetrazóis/farmacologia , Tetrazóis/metabolismo , Tetrazóis/uso terapêutico , Valsartana/farmacologia , Valsartana/metabolismo , Valsartana/uso terapêutico , Miócitos Cardíacos/metabolismo , Cardiomiopatia Hipertrófica/tratamento farmacológico , Ratos Endogâmicos WKY , Modelos TeóricosRESUMO
Melissa officinalis L. (MO), traditionally referred to as lemon balm, is one of the lemon-scent aromatic herbs widely used in traditional medicine due to its calming, sedative, and anti-arrhythmic effects. Furthermore, several studies have linked its therapeutic potential with its antioxidant properties. Here, we aimed to evaluate and compare the content of active components, antioxidant, and anti-inflammatory potential of three different MO extracts (MOEs), ethanolic macerate (E1), aqueous (E2), and ethanolic (E3), obtained under reflux and their effects on systemic redox status after acute per os administration in vivo post-carrageenan application. The HPLC analysis revealed that the most abundant constituent in all the three extracts was rosmarinic acid (RA), with higher content in E1 and E3 than in E2 (P < 0.05). The highest flavonoid content was found in the aqueous extract, especially quercetin (P < 0.05). For the carrageenan-induced paw edema model, dark agouti rats were used and divided into the groups: Control, indomethacin, E1, E2, and E3 subgrouped according to applied doses: 50, 100, and 200 mg/kg. Ethanolic macerate (E1200) and aqueous (E2100) MOE were shown to be anti-inflammatory agents in the carrageenan paw edema model, with the most prominent edema inhibition in the sixth hour post-carrageenan (63.89% and 69.44%, respectively, vs. 76.67% in the indomethacin group). All the three extracts reduced the production of pro-oxidants H2O2 and TBARS post-carrageenan and increased GSH levels compared to control (P < 0.05). These data imply the possible future usage of MOEs to prevent inflammatory and oxidative stress-related diseases.
RESUMO
We aimed to investigate the cardioprotective effects of ethanolic Melissa officinalis L. extract (ME) in the rat model of myocardial ischemia/reperfusion (I/R) injury. Thirty-two Wistar rats were randomly divided into a CTRL non-treated control group with myocardial I/R injury and three experimental groups of rats treated with 50, 100, or 200 mg/kg of ME for 7 days per os. Afterward, hearts were isolated, and cardiodynamic function was assessed via the Langendorff model of global 20 min ischemia and 30 min reperfusion. Oxidative stress parameters were determined spectrophotometrically from the samples of coronary venous effluent (O2-, H2O2, TBARS, and NO2-,) and heart tissue homogenate (TBARS, NO2-, SOD, and CAT). H/E and Picrosirius red staining were used to examine cardiac architecture and cardiac collagen content. ME improved cardiodynamic parameters and achieved to preserve cardiac architecture after I/R injury and to decrease fibrosis, especially in the ME200 group compared to CTRL. ME200 and ME100 markedly decreased prooxidants TBARS, O2-, and H2O2 while increasing NO2-. Hereby, we confirmed the ME`s ability to save the heart from I/R induced damage, even after short-term preconditioning in terms of preserving cardiodynamic alterations, cardiac architecture, fibrosis, and suppressing oxidative stress, especially in dose of 200 mg/kg.
RESUMO
The main goal of this study was to investigate the cardioprotective properties in terms of effects on cardiodynamics of perfluorocarbon emulsion (PFE) in ex vivo-induced ischemia-reperfusion injury of an isolated rat heart. The first part of the study aimed to determine the dose of 10% perfluoroemulsion (PFE) that would show the best cardioprotective effect in rats on ex vivo-induced ischemia-reperfusion injury of an isolated rat heart. Depending on whether the animals received saline or PFE, the animals were divided into a control or experimental group. They were also grouped depending on the applied dose (8, 12, 16 ml/kg body weight) of saline or PFE. We observed the huge changes in almost all parameters in the PFE groups in comparison with IR group without any pre-treatment. Calculated in percent, dp/dt max was the most changed parameter in group treated with 8 mg/kg, while the dp/dt min, SLVP, DLVP, HR, and CF were the most changed in group treated with 16 mg/kg 10 h before ischemia. The effects of 10% PFE are more pronounced if there is a longer period of time from application to ischemia, i.e., immediate application of PFE before ischemia (1 h) gave the weakest effects on the change of cardiodynamics of isolated rat heart. Therefore, the future of PFE use is in new indications and application methods, and PFE can also be referred to as antihypoxic and antiischemic blood substitute with mild membranotropic effects.
Assuntos
Substitutos Sanguíneos , Fluorocarbonos , Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Fluorocarbonos/farmacologia , Substitutos Sanguíneos/farmacologia , Substitutos Sanguíneos/uso terapêutico , Fenômenos Fisiológicos CardiovascularesRESUMO
The aim of this study was to examine and compare the influence of preconditioning, perconditioning, and postconditioning with creatine phosphate (PCr) on functional recovery and production of prooxidants in isolated rat hearts subjected to ex vivo ischemic-reperfusion (I-R) injury on a Langendorff apparatus. Wistar albino rats (male, n = 40) were divided into four groups: control and groups in which PCr (0.5 mmol/L, 5 min) was perfused before (Pre group), after (Post group), or during (Per group) ex vivo induced ischemia. PCr application was associated with the great benefits of preserving cardiac contractility (in Pre group 100.96% for +(dP/dt max) and 97.61% for -(dP/dt max), in Per group 96.72% for +(dP/dt max) and 95.60% for -(dP/dt max), and in Post group 143.84% for +(dP/dt max) and 104.36% for -(dP/dt max) in relation to the stabilization). In addition, PCr application prevented the increase in prooxidative markers during I-R injury in all therapeutic modalities. The most intensive benefits in the current investigation were observed when PCr was applied during the period of ischemia because the lowest fluctuations in the parameters of cardiac function and oxidative stress were observed. Overall, the results of this study highlight PCr-induced cardioprotection with promising prospects for future clinical use.
Assuntos
Precondicionamento Isquêmico Miocárdico , Traumatismo por Reperfusão Miocárdica , Animais , Coração , Precondicionamento Isquêmico Miocárdico/métodos , Masculino , Contração Miocárdica , Fosfocreatina/uso terapêutico , Ratos , Ratos WistarRESUMO
Due to existing evidence regarding antioxidant and anti-inflammatory effects of Melissa officinalis extracts (MOEs), this study was aimed at investigating the potential of ethanolic MOE to prevent the development of myocarditis and its ability to ameliorate the severity of experimental autoimmune myocarditis (EAM) by investigating MOE effects on in vivo cardiac function, structure, morphology, and oxidative stress parameters. A total of 50 7-week-old male Dark Agouti rats were enrolled in the study and randomly allocated into the following groups: CTRL, nontreated healthy rats; EAM, nontreated rats with EAM; MOE50, MOE100, and MOE200, rats with EAM treated with either 50, 100, or 200 mg/kg of MOE for 3 weeks per os. Myocarditis was induced by immunization of the rats with porcine myocardial myosin (0.5 mg) emulsion on day 0. Cardiac function and dimensions of the left ventricle (LV) were assessed via echocardiography. Additionally, the blood pressure and heart rate were measured. On day 21, rats were sacrificed and the hearts were isolated for further histopathological analyses (H/E and Picrosirius red staining). The blood samples were collected to determine oxidative stress parameters. The EAM group characteristically showed greater LV wall thickness and lower ejection fraction (50.33 ± 7.94% vs. 84.81 ± 7.74%) and fractional shortening compared to CTRL (p < 0.05). MOE significantly improved echocardiographic parameters (EF in MOE200 81.44 ± 5.51%) and also reduced inflammatory infiltrate (by 88.46%; p < 0.001) and collagen content (by 76.39%; p < 0.001) in the heart tissues, especially in the MOE200 group compared to the EAM group. In addition, MOEs induced a significant decrease of prooxidants production (O2 -, H2O2, and TBARS) and improved antioxidant defense system via increase in GSH, SOD, and CAT compared to EAM, with medium and high dose being more effective than low dose (p < 0.05). The present study suggests that ethanolic MOEs, especially in a 200 mg/kg dose, improve cardiac function and myocardial architecture, possibly via oxidative stress mitigation, thus preventing heart remodeling, development of dilated cardiomyopathy, and subsequent heart failure connected with EAM. MOEs might be considered as a potentially helpful adjuvant therapy in patients with autoimmune myocarditis.
Assuntos
Doenças Autoimunes/tratamento farmacológico , Melissa/química , Miocardite/tratamento farmacológico , Animais , Modelos Animais de Doenças , Humanos , Masculino , RatosRESUMO
The aim of our study was to investigate the effects of one-month consumption of polyphenol-rich standardized Aronia melanocarpa extract (SAE) on redox status in anemic hemodialysis patients. The study included 30 patients (Hb < 110 g/l, hemodialysis or hemodiafiltration > 3 months; > 3 times week). Patients were treated with commercially available SAE in a dose of 30 ml/day, for 30 days. After finishing the treatment blood samples were taken to evaluate the effects of SAE on redox status. Several parameters of anemia and inflammation were also followed. After the completion of the treatment, the levels of superoxide anion radical and nitrites significantly dropped, while the antioxidant capacity improved via elevation of catalase and reduced glutathione. Proven antioxidant effect was followed by beneficial effects on anemia parameters (increased hemoglobin and haptoglobin concentration, decreased ferritin and lactate dehydrogenase concentration), but SAE consumption didn't improve inflammatory status, except for minor decrease in C-reactive protein. The consumption of SAE regulates redox status (reduce the productions of pro-oxidative molecules and increase antioxidant defense) and has beneficial effects on anemia parameters. SAE could be considered as supportive therapy in patients receiving hemodialysis which are prone to oxidative stress caused by both chronic kidney disease and hemodialysis procedure. Additionally, it could potentially be a good choice for supplementation of anemic hemodialysis patients. TRN: NCT04208451 December 23, 2019 "retrospectively registered".
Assuntos
Anemia/dietoterapia , Inflamação/dietoterapia , Photinia/química , Extratos Vegetais/administração & dosagem , Polifenóis/administração & dosagem , Diálise Renal/métodos , Anemia/metabolismo , Anemia/patologia , Antioxidantes/administração & dosagem , Feminino , Humanos , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Oxirredução , Resultado do TratamentoRESUMO
This review aimed to provide a summary on the traditional uses, phytochemistry, and pharmacological activities in the cardiovascular system and cardiotoxicity of Melissa officinalis (MO), with the special emphasis on the protective mechanisms in different cardiovascular pathologies. MO is a perennial aromatic herb commonly known as lemon balm, honey balm, or bee balm, which belongs to Lamiaceae family. Active components are mainly located in the leaves or essential oil and include volatile compounds, terpenoid (monoterpenes, sesquiterpenes, triterpenes), and polyphenolic compounds [rosmarinic acid (RA), caffeic acid, protocatechuic acid, quercitrin, rhamnocitrin, luteolin]. For centuries, MO has been traditionally used as a remedy for memory, cognition, anxiety, depression, and heart palpitations. Up until now, several beneficial cardiovascular effects of MO, in the form of extracts (aqueous, alcoholic, and hydroalcoholic), essential oil, and isolated compounds, have been confirmed in preclinical animal studies, such as antiarrhythmogenic, negative chronotropic and dromotropic, hypotensive, vasorelaxant, and infarct size-reducing effects. Nonetheless, MO effects on heart palpitations are the only ones confirmed in human subjects. The main mechanisms proposed for the cardiovascular effects of this plant are antioxidant free radical-scavenging properties of MO polyphenols, amelioration of oxidative stress, anti-inflammatory effects, activation of M2 and antagonism of ß1 receptors in the heart, blockage of voltage-dependent Ca2+ channels, stimulation of endothelial nitric oxide synthesis, prevention of fibrotic changes, etc. Additionally, the main active ingredient of MO-RA, per se, has shown substantial cardiovascular effects. Because of the vastness of encouraging data from animal studies, this plant, as well as the main ingredient RA, should be considered and investigated further as a tool for cardioprotection and adjuvant therapy in patients suffering from cardiovascular diseases.
RESUMO
The aim of our study was to assess and compare the effects of dipeptidyl peptidase 4 (DPP4) inhibitors, saxagliptin and sitagliptin, on metabolic control of disease and cardiac function in rats with diabetes mellitus type 2 (T2DM). This research would provide novel understanding into the potentially protective effects of DPP4 inhibitors in helping salvage of the heart exposed to ischaemia-reperfusion (I-R) injury. Forty-eight Wistar albino rats were randomly divided into four groups: CTRL, Control healthy group; T2DM, rats with T2DM; T2DM + Sit, rats with T2DM treated with 0.6 mg/kg of sitagliptin; T2DM + Sax, rats with T2DM treated with 0.45 mg/kg of saxagliptin for 3 weeks. At the end of the protocol, in vivo cardiac function was assessed by echocardiography, while in the blood samples glucose and insulin were determined. Additionally, ex vivo heart function was estimated on a model of I-R injury using Langendorff apparatus. Immunohistochemical analysis was used to determine the degree of myocardial apoptosis and necrosis, while DPP4 staining was performed to assess the cardiac DPP4 expression. Data were analyzed using a one-way analysis of variance (ANOVA) and the post hoc Bonferroni test for multiple comparisons. Improved glycoregulation was noticed in rats that received DPP4 inhibitors compared to untreated diabetic rats (P < .05). Moreover, better in vivo systolic function was observed in rats treated with both DPP4 inhibitors as evidenced by an increase in fractional shortening when compared to T2DM (P < .05). Most parameters of cardiac function in treated rats remained unaltered during reperfusion, thus suggesting that both drugs protected myocardium during flow restoration. Better effects on coronary circulation were achieved after sitagliptin application. Additionally, both DPP4 inhibitors showed similar potential to attenuate cardiac necrosis and apoptosis. Saxagliptin and sitagliptin might be efficient in preserving myocardial function and morphology in ex vivo induced I-R cardiac injury in rats with T2DM.
Assuntos
Diabetes Mellitus Experimental , Inibidores da Dipeptidil Peptidase IV , Animais , Diabetes Mellitus Tipo 2 , Coração/efeitos dos fármacos , Ratos , Ratos Wistar , Fosfato de SitagliptinaRESUMO
Ruthenium(II) complexes offer the potential for lower toxicity compared with platinum(II) complexes. Our study aimed to compare cardiotoxicity of [Ru(Cl-tpy)(en)Cl][Cl], [Ru(Cl-tpy)(dach)Cl][Cl], [Ru(Cl-tpy)(bpy)Cl][Cl], cisplatin, and saline through assessment of redox status and relative expression of apoptosis-related genes. A total of 40 Wistar albino rats were divided into five groups. Ruthenium groups received a single dose of complexes intraperitoneally (4 mg/kg/week) for a 4-week period; cisplatin group received cisplatin (4 mg/kg/week) and control group received saline (4 mL/kg/week) in the same manner as ruthenium groups. In collected blood and heart tissue samples, spectrophotometric determination of oxidative stress biomarkers was performed. The relative expression of apoptosis-related genes (Bcl-2, Bax, and caspase-3) in hearts was examined by real-time polymerase chain reaction. Our results showed that systemic and cardiac pro-oxidative markers (thiobarbituric acid reactive substances and nitrite) were significantly lower in ruthenium groups compared with cisplatin group, while concentrations of antioxidative parameters (catalase, superoxide dismutase, and oxidized glutathione) were significantly higher. Ruthenium administration led to significantly lower gene expression of Bax and caspase-3 compared with cisplatin-treated rats, while Bcl-2 remained unchanged. Applied ruthenium complexes have less pronounced potential for induction of oxidative stress-mediated cardiotoxicity compared with cisplatin. These findings may help for future studies that should clarify the mechanisms of cardiotoxicity of ruthenium-based metallodrugs.
Assuntos
Apoptose/efeitos dos fármacos , Sangue/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Coração/efeitos dos fármacos , Rutênio/química , Animais , Relação Dose-Resposta a Droga , Oxirredução/efeitos dos fármacos , Ratos , Ratos WistarRESUMO
The aim of our study was to investigate the influence of 12 weeks of consumption of chokeberry extract on redox status, body composition, lipid profile, and biochemical parameters in active handball players. The study included 16 handball players aged 16-24 years (20.26 ± 2.86 years). Every morning before training, players received 30 mL of liquid chokeberry extract for 12 weeks during the regular competition season. The research consisted of morphofunctional and biochemical testing, which was performed at three points (at the beginning of the study and at 6 and 12 weeks after extract consumption). After the chokeberry extract treatment, we observed significant changes in three main aspects. The 12 week supplementation with chokeberry extract decreased the levels of prooxidants (TBARS and nitrites) and increased catalase activity. Analyzing the dynamic of body composition showed a decrease in body fat (9.4 ± 0.5 vs. 7.3 ± 0.6 kg) as well as its percent in a body (11.4 ± 0.4% vs. 8.8 ± 0.4%). On the other hand, the analysis showed an increase of high-density lipoprotein (1.3 ± 0.3 vs. 1.6 ± 0.2 mmol/L) and hemoglobin (144.4 ± 11.7 vs. 151.7 ± 9.9 g/L) after 6 weeks of treatment. At the same time, a decrease in leukocytes (7.2 × 109 ± 2.8 vs. 6.5 ± 1.2 × 109/L) and an increase in red blood cells count (4.9 ± 0.4 × 109 vs. 5.5 ± 0.5 × 109/L) were observed. Overall, these results emphatically show that the use of chokeberry extract dietary supplement induced a wide range of beneficial effects in the examined group of athletes.
Assuntos
Antioxidantes/administração & dosagem , Desempenho Atlético/fisiologia , Suplementos Nutricionais , Photinia/química , Extratos Vegetais/administração & dosagem , Administração Oral , Adolescente , Atletas/estatística & dados numéricos , Composição Corporal/fisiologia , Frutas/química , Humanos , Masculino , Estresse Oxidativo/fisiologia , Esportes , Resultado do Tratamento , Adulto JovemRESUMO
This study aimed to examine the effects of diallyl trisulfide (DATS), the most potent polysulfide derived from garlic, on metabolic syndrome and myocardial function in rats with metabolic syndrome (MetS). For that purpose, we used 36 male Wistar albino rats divided into control rats, rats with MetS and MetS rats treated with 40 mg/kg of DATS every second day for 3 weeks. In the first part, we studied the impact of DATS on MetS control and found that DATS significantly raised H2S, decreased homocysteine and glucose levels and enhanced lipid and antioxidative, while reducing prooxidative parameters. Additionally, this polysulfide improved cardiac function. In the second part, we investigated the impact of DATS on ex vivo induced ischemia/reperfusion (I/R) heart injury and found that DATS consumption significantly improved cardiodynamic parameters and prevented oxidative and histo-architectural variation in the heart. In addition, DATS significantly increased relative gene expression of eNOS, SOD-1 and -2, Bcl-2 and decreased relative gene expression of NF-κB, IL-17A, Bax, and caspases-3 and -9. Taken together, the data show that DATS can effectively mitigate MetS and have protective effects against ex vivo induced myocardial I/R injury in MetS rat.
Assuntos
Compostos Alílicos/uso terapêutico , Cardiotônicos/uso terapêutico , Alho/química , Síndrome Metabólica/tratamento farmacológico , Sulfetos/uso terapêutico , Compostos Alílicos/farmacologia , Animais , Glicemia/metabolismo , Cardiotônicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Teste de Tolerância a Glucose , Testes de Função Cardíaca/efeitos dos fármacos , Insulina/sangue , Linfonodos/efeitos dos fármacos , Linfonodos/patologia , Síndrome Metabólica/sangue , Síndrome Metabólica/fisiopatologia , Miocárdio/patologia , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Sulfetos/farmacologiaRESUMO
As well as the most known role of N-methyl-D-aspartate receptors (NMDARs) in the nervous system, there is a plethora of evidence that NMDARs are also present in the cardiovascular system where they participate in various physiological processes, as well as pathological conditions. The aim of this study was to assess the effects of preconditioning and postconditioning of isolated rat heart with NMDAR agonists and antagonists on heart function and release of oxidative stress biomarkers. The hearts of male Wistar albino rats were subjected to global ischemia for 20 min, followed by 30 min of reperfusion, using the Langendorff technique, and cardiodynamic parameters were determined during the subsequent preconditioning with the NMDAR agonists glutamate (100 µmol/L) and (RS)-(Tetrazol-5-yl)glycine (5 µmol/L) and the NMDAR antagonists memantine (100 µmol/L) and MK-801 (30 µmol/L). In the postconditioning group, the hearts were perfused with the same dose of drugs during the first 3 min of reperfusion. The oxidative stress biomarkers were determined spectrophotometrically in samples of coronary venous effluent. The NMDAR antagonists, especially MK-801, applied in postconditioning had a marked antioxidative effect with a most pronounced protective effect. The results from this study suggest that NMDARs could be a potential therapeutic target in the prevention and treatment of ischemic and reperfusion injury of the heart.
Assuntos
Coração/fisiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Estresse Oxidativo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Coração/efeitos dos fármacos , Masculino , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidoresRESUMO
The aim of this study was to estimate the effects of natural low mineral water from the source "Sneznik-1/79" in Serbia on glycemia as well as heart function in rats with diabetes mellitus type 2 (T2DM), with the special emphasis on the role of the oxidative stress. Twenty Wistar albino rats (males, 4 weeks old at the beginning of the study, body weight 180 ± 20 g) were included in the study. Rats were divided randomly into 2 groups (10 animals per group): T2DM: rats with diabetes mellitus type 2 with free access to tap water; T2DM + SW: rats with diabetes mellitus type with free access to natural mineral water from "Sneznik-1/79". Glucose level, ex vivo cardiac function as well as systemic and cardiac redox state were assessed. At the end of the study protocol, glucose level was lower in diabetic rats who consumed mineral water. Moreover cardiac function wasn't affected by mineral water intake, however, significant antioxidant effects were observed. Our study suggests that 4-week consumption of low mineral water from the spring "Sneznik-1/79" has important role in regulation of glycemia and altering redox state in favor of elevated antioxidant capacity without affecting heart function. Based on our findings we may assume that low mineral water from the spring "Sneznik-1/79" has the potential to be used either as preventive strategy or as additional therapeutic strategy in management of T2DM.
Assuntos
Antioxidantes/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose/metabolismo , Coração/fisiopatologia , Águas Minerais/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Coração/efeitos dos fármacos , Masculino , Ratos , Ratos WistarRESUMO
Taken into consideration that oxidative stress response after preconditioning with phosphodiesterase inhibitors (PDEIs) and moderate physical activity has still not been clarified, the aim of this study was to assess the effects of PDEIs alone or in combination with physical activity, on systemic redox status. The study was carried out on 96 male Wistar albino rats classified into two groups. The first group included animals exposed only to pharmacological preconditioning (PreC) maneuver (sedentary control (CTRL, 1 ml/day saline, n = 12), nicardipine (6 mg/kg/day of NIC, n = 12), vinpocetine (10 mg/kg/day of VIN, n = 12), and nimodipine (NIM 10 mg/kg/day of, n = 12). The second included animals exposed to preconditioning with moderate-intensity training (MIT) on treadmill for 8 weeks. After 5 weeks from the start of training, the animals were divided into four subgroups depending on the medication to be used for pharmacological PreC: moderate-intensity training (MIT+ 1 ml/day saline, n = 12), nicardipine (MIT+ 6 mg/kg/day of NIC, n = 12), vinpocetine (MIT+ 10 mg/kg/day of VIN, n = 12), and nimodipine (MIT+ 10 mg/kg/day of NIM, n = 12). After three weeks of pharmacological preconditioning, the animals were sacrificed. The following oxidative stress parameters were measured spectrophotometrically: nitrites (NO2 -), superoxide anion radical (O2 -), hydrogen peroxide (H2O2), index of lipid peroxidation (TBARS), superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (GSH). Our results showed that PDE1 and MIT preconditioning decreased the release of prooxidants and improved the activity of antioxidant enzymes thus preventing systemic oxidative stress.