Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36838990

RESUMO

Ca1-xLaxFeAs2 (CLFA112) belongs to a new family of Fe-based superconductors (FeSCs) and has a unique crystal structure featuring an arsenic zigzag chain layer, which has been proposed to be a possible two-dimensional topological insulator. This suggests that CLFA112 is a potential topological superconductor-a platform to realize Majorana fermions. Up to now, even a clear superconducting (SC) gap in CLFA112 has never been observed, and the SC properties of CLFA112 remain largely elusive. In this letter, we report the results of an atomic-scale investigation of the electronic structure of CLFA112 crystals using low-temperature scanning tunneling microscopy (STM). We revealed four different types of surfaces exhibiting distinct electronic properties, with all surfaces displaying dominating 2 × 1 surface reconstructions. On a Ca/La layer on top of an FeAs layer, a clear SC gap of ~12 mV was observed only at the crevices (vacancies) where the FeAs layer can be directly accessed. Remarkably, the FeAs termination layer displayed a dispersing nematic modulation both in real and q space. We also present peculiar zero-bias conductance peaks for the very As chain layer that is believed to exhibit a topological edge state as well as the influence of La dopants on the As chain layer.

2.
Sci Rep ; 11(1): 13383, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183706

RESUMO

In order to understand the superconducting gap nature of a [Formula: see text] single crystal with [Formula: see text], in-plane thermal conductivity [Formula: see text], in-plane London penetration depth [Formula: see text], and the upper critical fields [Formula: see text] have been investigated. At zero magnetic field, it is found that no residual linear term [Formula: see text] exists and [Formula: see text] follows a power-law [Formula: see text] (T: temperature) with n = 2.66 at [Formula: see text], supporting nodeless superconductivity. Moreover, the magnetic-field dependence of [Formula: see text]/T clearly shows a shoulder-like feature at a low field region. The temperature dependent [Formula: see text] curves for both in-plane and out-of-plane field directions exhibit clear upward curvatures near [Formula: see text], consistent with the shape predicted by the two-band theory and the anisotropy ratio between the [Formula: see text](T) curves exhibits strong temperature-dependence. All these results coherently suggest that [Formula: see text] is a nodeless, multiband superconductor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA