Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Lancet Microbe ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38870982

RESUMO

BACKGROUND: The intensive use of antibiotics has resulted in strong natural selection for the evolution of antimicrobial resistance (AMR), but whether, and under what circumstances, the removal of antibiotics would result in a rapid reduction in AMR has been insufficiently explored. We aimed to test the hypothesis that in the simple, yet common, case of AMR conferred by a single gene, removing antibiotics would quickly reduce the prevalence of resistance if the AMR gene imposes a high fitness cost and costless resistance is extremely rare among its proximal mutants. METHODS: In this genetic study, to test our hypothesis, we used the mcr-1 gene in Escherichia coli, which confers resistance to the last-resort antibiotic colistin, as a model. A high-throughput reverse genetics approach was used to evaluate mcr-1 variants for their fitness cost and resistance levels relative to a non-functional construct, by measuring relative growth rates in colistin-free media and at 2 µg/mL and 4 µg/mL colistin. We identified costless resistant mcr-1 mutants, and examined their properties within the context of the sequential organisation of mcr-1's functional domains as well as the evolutionary accessibility of these mutations. Finally, a simple population genetic model incorporating the measured fitness cost was constructed and tested against previously published real-world data of mcr-1 prevalence in colonised inpatients in China since the 2017 colistin ban in fodder additives. FINDINGS: We estimated the relative growth rates of 14 742 mcr-1 E coli variants (including the wild type), 3449 of which were single-nucleotide mutants. E coli showed 73·8% less growth per 24 h when carrying wild-type mcr-1 compared with the non-functional construct. 6252 (42·4%) of 14 741 mcr-1 mutants showed colistin resistance accompanied by significant fitness costs, when grown under 4 µg/mL colistin selection. 43 (0·3%) mcr-1 mutants exhibited costless resistance, most of which contained multiple mutations. Among the 3449 single mutants of mcr-1, 3433 (99·5%) had a fitness cost when grown in colistin-free media, with a mean relative growth of 0·305 (SD 0·193) compared with the non-functional variant. 3059 (88·7%) and 1833 (53·1%) of 3449 single mutants outgrew the non-functional mcr-1 in the presence of 2 µg/mL and 4 µg/mL colistin, respectively. Single mutations that gave rise to costless mutants were rare in all three domains of mcr-1 (transmembrane domain, flexible linker, and catalytic domain), but the linker domain was enriched with cost-reducing and resistance-enhancing mutations and depleted with cost-increasing mutations. The population genetics model based on the experimental data accurately predicts the rapid decline in mcr-1 prevalence in real-world data. INTERPRETATION: Many identified costless resistant variants that consist of multiple mutations are unlikely to evolve easily in nature. These findings for colistin and mcr-1 might be applicable to other cases in which AMR entails a substantial fitness cost that cannot be mitigated in proximal mutants. FUNDING: National Natural Science Foundation of China, and National Key Research and Development Program of China.

2.
Biol Chem ; 402(7): 805-813, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33984882

RESUMO

The molecular pathogenesis of colorectal cancer (CRC) has been widely investigated in recent years. Accumulating evidence has indicated that microRNA (miRNA) dysregulation participates in the processes of driving CRC initiation and progression. Aberrant expression of miR-1301 has been found in various tumor types. However, its role in CRC remains to be elucidated. In the present study, we identified miR-1301 was enriched in normal colorectal tissues and significantly down-regulated in CRC. Decreased level of miR-1301 strongly correlated with aggressive pathological characteristics, including advanced stage and metastasis. Bioinformatics and dual luciferase assay demonstrated that STAT3 is a direct target of miR-1301. Gain and loss-of-function assays showed that miR-1301 had no effect on cell proliferation. Overexpression of miR-1301 suppressed cell migration and invasion capacity of pSTAT3-positive LoVo cells, but not pSTAT3-negative SW480 cells, while inhibition of miR-1301 consistently promoted cell migration and invasion in both cell lines. Additionally, miR-1301 inhibition restored the suppressed migration and invasion of STAT3-knockdown LoVo cells. MiR-1301 functioned as a tumor suppressor to modulate the IL6/STAT3 signaling pathway. In summary, this study highlights the significant role of miR-1301/STAT3 axis in CRC metastasis.


Assuntos
Neoplasias Colorretais/metabolismo , MicroRNAs/metabolismo , Fator de Transcrição STAT3/metabolismo , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/patologia , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , MicroRNAs/genética , Fator de Transcrição STAT3/deficiência , Fator de Transcrição STAT3/genética , Células Tumorais Cultivadas
3.
Biomed Pharmacother ; 106: 1370-1377, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30119209

RESUMO

Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide. Accumulation of varieties of epigenetic changes, including miRNA regulation, is one of the fundamental processes driving CRC initiation and progression. Mir-92a has been reported in several studies as an oncogene, and particularly in colorectal cancer, it has become a useful biomarker for early detection of CRC in both serum or stool. The Cancer Genome Atlas (TCGA) is a powerful database to analyze cancer-related genes and their correlation with patients' pathological information. However, miR-92a expression and its regulating target genes has yet to be investigated in TCGA system. In this study, we found miR-92a expression is associated with CRC pathological process. Notably, high expression of miR-92a mainly occurs in microsatellite-stable (MSS) cases. Further experiments showed exogenous introduction of miR-92a into LoVo and SW480 cells could enhance cell proliferation, migration, and invasion, whereas inhibition of miR-92a showed the opposite effects. A system analysis based on binding capacity and expression correlation analysis confirmed DKK3 and KLF4 are the top target genes of miR-92a, and novel target SMAD7 highlights the role of miR-92a in BMPs/SMAD pathway. In conclusion, miR-92a acts as an oncomir and directly targets Wnt/ß-catenin, PTEN/Akt/FoxO, and BMP/Smads related genes, thus participates in CRC progression.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Biologia Computacional , Perfilação da Expressão Gênica , MicroRNAs/genética , Idoso , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Bases de Dados Genéticas , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Fator 4 Semelhante a Kruppel , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Invasividade Neoplásica , Estadiamento de Neoplasias , Mapas de Interação de Proteínas , Transdução de Sinais , Fatores de Tempo , Transcriptoma
4.
Mol Plant ; 11(10): 1278-1291, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30130577

RESUMO

In plants, stomatal movements are tightly controlled by changes in cellular turgor pressure. Carbohydrates produced by glycolysis and the tricarboxylic acid cycle play an important role in regulating turgor pressure. Here, we describe an Arabidopsis mutant, bzu1, isolated in a screen for elevated leaf temperature in response to drought stress, which displays smaller stomatal pores and higher drought resistance than wild-type plants. BZU1 encodes a known acetyl-coenzyme A synthetase, ACN1, which acts in the first step of a metabolic pathway converting acetate to malate in peroxisomes. We showed that BZU1/ACN1-mediated acetate-to-malate conversion provides a shunt that plays an important role in osmoregulation of stomatal turgor. We found that the smaller stomatal pores in the bzu1 mutant are a consequence of reduced accumulation of malate, which acts as an osmoticum and/or a signaling molecule in the control of turgor pressure within guard cells, and these results provided new genetic evidence for malate-regulated stomatal movement. Collectively, our results indicate that a peroxisomal BZU1/ACN1-mediated acetate-malate shunt regulates drought resistance by controlling the turgor pressure of guard cells in Arabidopsis.


Assuntos
Arabidopsis/metabolismo , Malatos/metabolismo , Peroxissomos/metabolismo , Estômatos de Plantas/metabolismo , Adaptação Fisiológica , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Secas , Mutação , Osmorregulação , Transpiração Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA