Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
FASEB J ; 37(11): e23229, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37795915

RESUMO

Toxoplasma gondii is an obligate, intracellular apicomplexan protozoan parasite of both humans and animals that can cause fetal damage and abortion and severe disease in the immunosuppressed. Sphingolipids have indispensable functions as signaling molecules and are essential and ubiquitous components of eukaryotic membranes that are both synthesized and scavenged by the Apicomplexa. Ceramide is the precursor for all sphingolipids, and here we report the identification, localization and analyses of the Toxoplasma ceramide synthases TgCerS1 and TgCerS2. Interestingly, we observed that while TgCerS1 was a fully functional orthologue of the yeast ceramide synthase (Lag1p) capable of catalyzing the conversion of sphinganine to ceramide, in contrast TgCerS2 was catalytically inactive. Furthermore, genomic deletion of TgCerS1 using CRISPR/Cas-9 led to viable but slow-growing parasites indicating its importance but not indispensability. In contrast, genomic knock out of TgCerS2 was only accessible utilizing the rapamycin-inducible Cre recombinase system. Surprisingly, the results demonstrated that this "pseudo" ceramide synthase, TgCerS2, has a considerably greater role in parasite fitness than its catalytically active orthologue (TgCerS1). Phylogenetic analyses indicated that, as in humans and plants, the ceramide synthase isoforms found in Toxoplasma and other Apicomplexa may have arisen through gene duplication. However, in the Apicomplexa the duplicated copy is hypothesized to have subsequently evolved into a non-functional "pseudo" ceramide synthase. This arrangement is unique to the Apicomplexa and further illustrates the unusual biology that characterize these protozoan parasites.


Assuntos
Parasitos , Toxoplasma , Humanos , Animais , Toxoplasma/genética , Duplicação Gênica , Filogenia , Esfingolipídeos , Ceramidas/genética , Proteínas de Protozoários/genética
2.
Front Cell Infect Microbiol ; 13: 1237594, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600951

RESUMO

Toxoplasma gondii is a widespread single-celled intracellular eukaryotic apicomplexan protozoan parasite primarily associated with mammalian foetal impairment and miscarriage, including in humans. Is estimated that approximately one third of the human population worldwide is infected by this parasite. Here we used cutting-edge, label-free 3D quantitative optical diffraction holotomography to capture and evaluate the Toxoplasma lytic cycle (invasion, proliferation and egress) in real-time based on the refractive index distribution. In addition, we used this technology to analyse an engineered CRISPR-Cas9 Toxoplasma mutant to reveal differences in cellular physical properties when compared to the parental line. Collectively, these data support the use of holotomography as a powerful tool for the study of protozoan parasites and their interactions with their host cells.


Assuntos
Toxoplasma , Humanos , Animais , Toxoplasma/genética , Deleção de Genes , Eucariotos , Células Eucarióticas , Feto , Mamíferos
3.
Insect Biochem Mol Biol ; 156: 103934, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36990247

RESUMO

The tobacco whitefly, Bemisia tabaci, is a polyphagous crop pest which causes high levels of economic damage across the globe. Insecticides are often required for the effective control of this species, among which the neonicotinoid class have been particularly widely used. Deciphering the mechanisms responsible for resistance to these chemicals is therefore critical to maintain control of B. tabaci and limit the damage it causes. An important mechanism of resistance to neonicotinoids in B. tabaci is the overexpression of the cytochrome P450 gene CYP6CM1 which leads to the enhanced detoxification of several neonicotinoids. In this study we show that qualitative changes in this P450 dramatically alter its metabolic capacity to detoxify neonicotinoids. CYP6CM1 was significantly over-expressed in two strains of B. tabaci which displayed differing levels of resistance to the neonicotinoids imidacloprid and thiamethoxam. Sequencing of the CYP6CM1 coding sequence from these strains revealed four different alleles encoding isoforms carrying several amino acid changes. Expression of these alleles in vitro and in vivo provided compelling evidence that a mutation (A387G), present in two of the CYP6CM1 alleles, results in enhanced resistance to several neonicotinoids. These data demonstrate the importance of both qualitative and quantitative changes in genes encoding detoxification enzymes in the evolution of insecticide resistance and have applied implications for resistance monitoring programs.


Assuntos
Hemípteros , Inseticidas , Animais , Mutação Puntual , Neonicotinoides/farmacologia , Neonicotinoides/metabolismo , Inseticidas/farmacologia , Inseticidas/metabolismo , Nitrocompostos/farmacologia , Nitrocompostos/metabolismo , Resistência a Inseticidas/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Hemípteros/genética , Hemípteros/metabolismo
4.
Cells ; 11(5)2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269433

RESUMO

Toxoplasma gondii (T. gondii) is an opportunistic protozoan that can cause brain infection and other serious health consequences in immuno-compromised individuals. This parasite has a remarkable ability to cross biological barriers and exploit the host cell microenvironment to support its own survival and growth. Recent advances in label-free spectroscopic imaging techniques have made it possible to study biological systems at a high spatial resolution. In this study, we used conventional Fourier-transform infrared (FTIR) microspectroscopy and synchrotron-based FTIR microspectroscopy to analyze the chemical changes that are associated with infection of human brain microvascular endothelial cells (hBMECs) by T. gondii (RH) tachyzoites. Both FTIR microspectroscopic methods showed utility in revealing the chemical alterations in the infected hBMECs. Using a ZnS hemisphere device, to increase the numerical aperture, and the synchrotron source to increase the brightness, we obtained spatially resolved spectra from within a single cell. The spectra extracted from the nucleus and cytosol containing the tachyzoites were clearly distinguished. RNA sequencing analysis of T. gondii-infected and uninfected hBMECs revealed significant changes in the expression of host cell genes and pathways in response to T. gondii infection. These FTIR spectroscopic and transcriptomic findings provide significant insight into the molecular changes that occur in hBMECs during T. gondii infection.


Assuntos
Toxoplasma , Toxoplasmose , Células Endoteliais , Interações Hospedeiro-Parasita , Humanos , Transcriptoma
5.
ACS Infect Dis ; 7(1): 47-63, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33291887

RESUMO

Current chemotherapeutics for leishmaniasis have multiple deficiencies, and there is a need for new safe, efficacious, and affordable medicines. This study describes a successful drug repurposing approach that identifies the over-the-counter antihistamine, clemastine fumarate, as a potential antileishmanial drug candidate. The screening for inhibitors of the sphingolipid synthase (inositol phosphorylceramide synthase, IPCS) afforded, following secondary screening against Leishmania major (Lmj) promastigotes, 16 active compounds. Further refinement through the dose response against LmjIPCS and intramacrophage L. major amastigotes identified clemastine fumarate with good activity and selectivity with respect to the host macrophage. On target engagement was supported by diminished sensitivity in a sphingolipid-deficient L. major mutant (ΔLmjLCB2) and altered phospholipid and sphingolipid profiles upon treatment with clemastine fumarate. The drug also induced an enhanced host cell response to infection indicative of polypharmacology. The activity was sustained across a panel of Old and New World Leishmania species, displaying an in vivo activity equivalent to the currently used drug, glucantime, in a mouse model of L. amazonensis infection. Overall, these data validate IPCS as an antileishmanial drug target and indicate that clemastine fumarate is a candidate for repurposing for the treatment of leishmaniasis.


Assuntos
Antiprotozoários , Leishmaniose , Preparações Farmacêuticas , Animais , Antiprotozoários/farmacologia , Clemastina/uso terapêutico , Inositol , Leishmaniose/tratamento farmacológico , Camundongos
6.
Sci Rep ; 9(1): 8083, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31147620

RESUMO

Resistance to 157 different herbicides and 88% of known sites of action has been observed, with many weeds resistant to two or more modes. Coupled with tighter environmental regulation, this demonstrates the need to identify new modes of action and novel herbicides. The plant sphingolipid biosynthetic enzyme, inositol phosphorylceramide synthase (IPCS), has been identified as a novel, putative herbicide target. The non-mammalian nature of this enzyme offers the potential of discovering plant specific inhibitory compounds with minimal impact on animals and humans, perhaps leading to the development of new non-toxic herbicides. The best characterised and most highly expressed isoform of the enzyme in the model-dicot Arabidopsis, AtIPCS2, was formatted into a yeast-based assay which was then utilized to screen a proprietary library of over 11,000 compounds provided by Bayer AG. Hits from this screen were validated in a secondary in vitro enzyme assay. These studies led to the identification of a potent inhibitor that showed selectivity for AtIPCS2 over the yeast orthologue, and activity against Arabidopsis seedlings. This work highlighted the use of a yeast-based screening assay to discover herbicidal compounds and the status of the plant IPCS as a novel herbicidal target.


Assuntos
Proteínas de Arabidopsis/antagonistas & inibidores , Arabidopsis/efeitos dos fármacos , Herbicidas/farmacologia , Hexosiltransferases/antagonistas & inibidores , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ensaios Enzimáticos , Técnicas de Inativação de Genes , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Plântula/efeitos dos fármacos
7.
Nat Commun ; 10(1): 1832, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015432

RESUMO

Ceramides draw wide attention as tumor suppressor lipids that act directly on mitochondria to trigger apoptotic cell death. However, molecular details of the underlying mechanism are largely unknown. Using a photoactivatable ceramide probe, we here identify the voltage-dependent anion channels VDAC1 and VDAC2 as mitochondrial ceramide binding proteins. Coarse-grain molecular dynamics simulations reveal that both channels harbor a ceramide binding site on one side of the barrel wall. This site includes a membrane-buried glutamate that mediates direct contact with the ceramide head group. Substitution or chemical modification of this residue abolishes photolabeling of both channels with the ceramide probe. Unlike VDAC1 removal, loss of VDAC2 or replacing its membrane-facing glutamate with glutamine renders human colon cancer cells largely resistant to ceramide-induced apoptosis. Collectively, our data support a role of VDAC2 as direct effector of ceramide-mediated cell death, providing a molecular framework for how ceramides exert their anti-neoplastic activity.


Assuntos
Apoptose , Ceramidas/metabolismo , Mitocôndrias/fisiologia , Canal de Ânion 2 Dependente de Voltagem/metabolismo , Sítios de Ligação/genética , Ceramidas/química , Técnicas de Inativação de Genes , Ácido Glutâmico/química , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Simulação de Dinâmica Molecular , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Canal de Ânion 1 Dependente de Voltagem/química , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 1 Dependente de Voltagem/isolamento & purificação , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Canal de Ânion 2 Dependente de Voltagem/química , Canal de Ânion 2 Dependente de Voltagem/genética , Canal de Ânion 2 Dependente de Voltagem/isolamento & purificação
8.
Int J Parasitol Drugs Drug Resist ; 8(3): 475-487, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30399513

RESUMO

Previous work from our group showed that tamoxifen, an oral drug that has been in use for the treatment of breast cancer for over 40 years, is active both in vitro and in vivo against several species of Leishmania, the etiological agent of leishmaniasis. Using a combination of metabolic labeling with [3H]-sphingosine and myo-[3H]-inositol, alkaline hydrolysis, HPTLC fractionations and mass spectrometry analyses, we observed a perturbation in the metabolism of inositolphosphorylceramides (IPCs) and phosphatidylinositols (PIs) after treatment of L. amazonensis promastigotes with tamoxifen, with a significant reduction in the biosynthesis of the major IPCs (composed of d16:1/18:0-IPC, t16:0/C18:0-IPC, d18:1/18:0-IPC and t16:0/20:0-IPC) and PIs (sn-1-O-(C18:0)alkyl -2-O-(C18:1)acylglycerol-3-HPO4-inositol and sn-1-O-(C18:0)acyl-2-O-(C18:1)acylglycerol-3-HPO4-inositol) species. Substrate saturation kinetics of myo-inositol uptake analyses indicated that inhibition of inositol transport or availability were not the main reasons for the reduced biosynthesis of IPC and PI observed in tamoxifen treated parasites. An in vitro enzymatic assay was used to show that tamoxifen was able to inhibit the Leishmania IPC synthase with an IC50 value of 8.48 µM (95% CI 7.68-9.37), suggesting that this enzyme is most likely one of the targets for this compound in the parasites.


Assuntos
Vias Biossintéticas/efeitos dos fármacos , Glicoesfingolipídeos/biossíntese , Leishmania/efeitos dos fármacos , Tamoxifeno/farmacologia , Glicoesfingolipídeos/metabolismo , Hexosiltransferases/efeitos dos fármacos , Hexosiltransferases/metabolismo , Concentração Inibidora 50 , Inositol/metabolismo , Leishmania/fisiologia , Leishmania mexicana/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Fosfatidilinositóis/metabolismo
9.
Sci Rep ; 8(1): 3938, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29500420

RESUMO

Leishmaniasis is a Neglected Tropical Disease caused by the insect-vector borne protozoan parasite, Leishmania species. Infection affects millions of the world's poorest, however vaccines are absent and drug therapy limited. Recently, public-private partnerships have developed to identify new modes of controlling leishmaniasis. Drug discovery is a significant part of these efforts and here we describe the development and utilization of a novel assay to identify antiprotozoal inhibitors of the Leishmania enzyme, inositol phosphorylceramide (IPC) synthase. IPC synthase is a membrane-bound protein with multiple transmembrane domains, meaning that a conventional in vitro assay using purified protein in solution is highly challenging. Therefore, we utilized Saccharomyces cerevisiae as a vehicle to facilitate ultra-high throughput screening of 1.8 million compounds. Antileishmanial benzazepanes were identified and shown to inhibit the enzyme at nanomolar concentrations. Further chemistry produced a benzazepane that demonstrated potent and specific inhibition of IPC synthase in the Leishmania cell.


Assuntos
Antiprotozoários/farmacologia , Inibidores Enzimáticos/farmacologia , Glicoesfingolipídeos/antagonistas & inibidores , Leishmania/efeitos dos fármacos , Leishmania/enzimologia , Saccharomyces cerevisiae/metabolismo , Células Hep G2 , Ensaios de Triagem em Larga Escala/métodos , Humanos , Concentração Inibidora 50
10.
J Lipid Res ; 59(3): 515-530, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29343537

RESUMO

Ceramides are central intermediates of sphingolipid metabolism with dual roles as mediators of cellular stress signaling and mitochondrial apoptosis. How ceramides exert their cytotoxic effects is unclear and their poor solubility in water hampers a search for specific protein interaction partners. Here, we report the application of a photoactivatable and clickable ceramide analog, pacCer, to identify ceramide binding proteins and unravel the structural basis by which these proteins recognize ceramide. Besides capturing ceramide transfer protein (CERT) from a complex proteome, our approach yielded CERT-related steroidogenic acute regulatory protein D7 (StarD7) as novel ceramide binding protein. Previous work revealed that StarD7 is required for efficient mitochondrial import of phosphatidylcholine (PC) and serves a critical role in mitochondrial function and morphology. Combining site-directed mutagenesis and photoaffinity labeling experiments, we demonstrate that the steroidogenic acute regulatory transfer domain of StarD7 harbors a common binding site for PC and ceramide. While StarD7 lacks robust ceramide transfer activity in vitro, we find that its ability to shuttle PC between model membranes is specifically affected by ceramides. Besides demonstrating the suitability of pacCer as a tool to hunt for ceramide binding proteins, our data point at StarD7 as a candidate effector protein by which ceramides may exert part of their mitochondria-mediated cytotoxic effects.


Assuntos
Proteínas de Transporte/metabolismo , Ceramidas/metabolismo , Lipídeos , Proteínas de Transporte/biossíntese , Células HeLa , Humanos , Mitocôndrias/metabolismo
11.
Parasitology ; 145(2): 134-147, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28637533

RESUMO

Sphingolipids (SLs) are an integral part of all eukaryotic cellular membranes. In addition, they have indispensable functions as signalling molecules controlling a myriad of cellular events. Disruption of either the de novo synthesis or the degradation pathways has been shown to have detrimental effects. The earlier identification of selective inhibitors of fungal SL biosynthesis promised potent broad-spectrum anti-fungal agents, which later encouraged testing some of those agents against protozoan parasites. In this review we focus on the key enzymes of the SL de novo biosynthetic pathway in protozoan parasites of the Apicomplexa and Kinetoplastidae, outlining the divergence and interconnection between host and pathogen metabolism. The druggability of the SL biosynthesis is considered, alongside recent technology advances that will enable the dissection and analyses of this pathway in the parasitic protozoa. The future impact of these advances for the development of new therapeutics for both globally threatening and neglected infectious diseases is potentially profound.


Assuntos
Apicomplexa/efeitos dos fármacos , Apicomplexa/metabolismo , Kinetoplastida/metabolismo , Redes e Vias Metabólicas , Esfingolipídeos/biossíntese , Animais , Ceramidas/metabolismo , Sistemas de Liberação de Medicamentos , Interações Hospedeiro-Parasita , Humanos , Kinetoplastida/efeitos dos fármacos , Parasitos/metabolismo , Esfingolipídeos/química , Esfingolipídeos/metabolismo
12.
J Biol Chem ; 292(29): 12208-12219, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28578314

RESUMO

Toxoplasma gondii is an obligate, intracellular eukaryotic apicomplexan protozoan parasite that can cause fetal damage and abortion in both animals and humans. Sphingolipids are essential and ubiquitous components of eukaryotic membranes that are both synthesized and scavenged by the Apicomplexa. Here we report the identification, isolation, and analyses of the Toxoplasma serine palmitoyltransferase, an enzyme catalyzing the first and rate-limiting step in sphingolipid biosynthesis: the condensation of serine and palmitoyl-CoA. In all eukaryotes analyzed to date, serine palmitoyltransferase is a highly conserved heterodimeric enzyme complex. However, biochemical and structural analyses demonstrated the apicomplexan orthologue to be a functional, homodimeric serine palmitoyltransferase localized to the endoplasmic reticulum. Furthermore, phylogenetic studies indicated that it was evolutionarily related to the prokaryotic serine palmitoyltransferase, identified in the Sphingomonadaceae as a soluble homodimeric enzyme. Therefore this enzyme, conserved throughout the Apicomplexa, is likely to have been obtained via lateral gene transfer from a prokaryote.


Assuntos
Retículo Endoplasmático/enzimologia , Modelos Moleculares , Filogenia , Proteínas de Protozoários/metabolismo , Serina C-Palmitoiltransferase/metabolismo , Toxoplasma/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Biologia Computacional , Sequência Conservada , Dimerização , Deleção de Genes , Duplicação Gênica , Transferência Genética Horizontal , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/isolamento & purificação , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Serina C-Palmitoiltransferase/química , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/isolamento & purificação , Homologia Estrutural de Proteína
13.
J Lipid Res ; 58(5): 962-973, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28336574

RESUMO

SM is a fundamental component of mammalian cell membranes that contributes to mechanical stability, signaling, and sorting. Its production involves the transfer of phosphocholine from phosphatidylcholine onto ceramide, a reaction catalyzed by SM synthase (SMS)1 in the Golgi and SMS2 at the plasma membrane. Mammalian cells also synthesize trace amounts of the SM analog, ceramide phosphoethanolamine (CPE), but the physiological relevance of CPE production is unclear. Previous work revealed that SMS2 is a bifunctional enzyme producing both SM and CPE, whereas a closely related enzyme, SMS-related protein (SMSr)/SAMD8, acts as a monofunctional CPE synthase in the endoplasmic reticulum. Using domain swapping and site-directed mutagenesis on enzymes expressed in defined lipid environments, we here identified structural determinants that mediate the head group selectivity of SMS family members. Notably, a single residue adjacent to the catalytic histidine in the third exoplasmic loop profoundly influenced enzyme specificity, with Glu permitting SMS-catalyzed CPE production and Asp confining the enzyme to produce SM. An exchange of exoplasmic residues with SMSr proved sufficient to convert SMS1 into a bulk CPE synthase. This allowed us to establish mammalian cells that produce CPE rather than SM as the principal phosphosphingolipid and provide a model of the molecular interactions that impart catalytic specificity among SMS enzymes.


Assuntos
Domínio Catalítico , Mutagênese Sítio-Dirigida , Esfingolipídeos/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Humanos , Domínios Proteicos , Especificidade por Substrato , Transferases (Outros Grupos de Fosfato Substituídos)/genética
14.
Sci Rep ; 7: 41290, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28120887

RESUMO

SMSr/SAMD8 is an ER-resident ceramide phosphoethanolamine synthase with a critical role in controlling ER ceramides and suppressing ceramide-induced apoptosis in cultured cells. SMSr-mediated ceramide homeostasis relies on the enzyme's catalytic activity as well as on its N-terminal sterile α-motif or SAM domain. Here we report that SMSr-SAM is structurally and functionally related to the SAM domain of diacylglycerol kinase DGKδ, a central regulator of lipid signaling at the plasma membrane. Native gel electrophoresis indicates that both SAM domains form homotypic oligomers. Chemical crosslinking studies show that SMSr self-associates into ER-resident trimers and hexamers that resemble the helical oligomers formed by DGKδ-SAM. Residues critical for DGKδ-SAM oligomerization are conserved in SMSr-SAM and their substitution causes a dissociation of SMSr oligomers as well as a partial redistribution of the enzyme to the Golgi. Conversely, treatment of cells with curcumin, a drug disrupting ceramide and Ca2+ homeostasis in the ER, stabilizes SMSr oligomers and promotes retention of the enzyme in the ER. Our data provide first demonstration of a multi-pass membrane protein that undergoes homotypic oligomerization via its SAM domain and indicate that SAM-mediated self-assembly of SMSr is required for efficient retention of the enzyme in the ER.

15.
J Lipid Res ; 57(7): 1273-85, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27165857

RESUMO

SM is a fundamental component of mammalian cell membranes that contributes to mechanical stability, signaling, and sorting. Its production involves the transfer of phosphocholine from phosphatidylcholine onto ceramide, a reaction catalyzed by SM synthase (SMS) 1 in the Golgi and SMS2 at the plasma membrane. Mammalian cells also synthesize trace amounts of the SM analog ceramide phosphoethanolamine (CPE), but the physiological relevance of CPE production is unclear. Previous work revealed that SMS2 is a bifunctional enzyme producing both SM and CPE, whereas a closely related enzyme, sphingomyelin synthase-related protein (SMSr)/SAMD8, acts as a monofunctional CPE synthase in the endoplasmatic reticulum. Using domain swapping and site-directed mutagenesis on enzymes expressed in defined lipid environments, we here identified structural determinants that mediate head group selectivity of SMS family members. Notably, a single residue adjacent to the catalytic histidine in the third exoplasmic loop profoundly influenced enzyme specificity, with glutamic acid permitting SMS-catalyzed CPE production and aspartic acid confining the enzyme to produce SM. An exchange of exoplasmic residues with SMSr proved sufficient to convert SMS1 into a bulk CPE synthase. This allowed us to establish mammalian cells that produce CPE rather than SM as the principal phosphosphingolipid and provide a model of the molecular interactions that impart catalytic specificity among SMS enzymes.


Assuntos
Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Engenharia de Proteínas , Esfingomielinas/biossíntese , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Sistema Livre de Células , Química Click , Retículo Endoplasmático/enzimologia , Complexo de Golgi/enzimologia , Células HeLa , Humanos , Proteínas de Membrana/química , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/química , Esfingomielinas/genética , Transferases (Outros Grupos de Fosfato Substituídos)/química
16.
Mol Biochem Parasitol ; 187(1): 43-51, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23246819

RESUMO

Sphingolipids are essential components of eukaryotic cell membranes, particularly the plasma membrane, and are involved in a diverse array of signal transduction pathways. Mammals produce sphingomyelin (SM) as the primary complex sphingolipid via the well characterised SM synthase. In contrast yeast, plants and some protozoa utilise an evolutionarily related inositol phosphorylceramide (IPC) synthase to synthesise IPC. This activity has no mammalian equivalent and IPC synthase has been proposed as a target for anti-fungals and anti-protozoals. However, detailed knowledge of the sphingolipid biosynthetic pathway of the apicomplexan protozoan parasites was lacking. In this study bioinformatic analyses indicated a single copy orthologue of the putative SM synthase from the apicomplexan Plasmodium falciparum (the causative agent of malaria) was a bona fide sphingolipid synthase in the related model parasite, Toxoplasma gondii (TgSLS). Subsequently, TgSLS was indicated, by complementation of a mutant cell line, to be a functional orthologue of the yeast IPC synthase (AUR1p), demonstrating resistance to the well characterised AUR1p inhibitor aureobasidin A. In vitro, recombinant TgSLS exhibited IPC synthase activity and, for the first time, the presence of IPC was demonstrated in T. gondii lipid extracts by mass spectrometry. Furthermore, host sphingolipid biosynthesis was indicated to influence, but be non-essential for, T. gondii proliferation, suggesting that whilst scavenging does take place de novo sphingolipid synthesis may be important for parasitism.


Assuntos
Esfingolipídeos/metabolismo , Toxoplasma/metabolismo , Biologia Computacional , Deleção de Genes , Teste de Complementação Genética , Hexosiltransferases/metabolismo
17.
Biochem Res Int ; 2012: 248135, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22400113

RESUMO

Sphingolipids are ubiquitous in eukaryotic cells where they have been attributed a plethora of functions from the formation of structural domains to polarized cellular trafficking and signal transduction. Recent research has identified and characterised many of the key enzymes involved in sphingolipid metabolism and this has led to a heightened interest in the possibility of targeting these processes for therapies against cancers, Alzheimer's disease, and numerous important human pathogens. In this paper we outline the major pathways in eukaryotic sphingolipid metabolism and discuss these in relation to disease and therapy for both chronic and infectious conditions.

18.
Org Biomol Chem ; 9(6): 1823-30, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21267500

RESUMO

The synthesis of set of ceramide analogues exploring hydrophobicity in the acyl chains and the degree and nature of hydroxylation is described. These have been assayed against the parasitic protozoan enzyme LmjIPCS. These studies showed that whilst the C-3 hydroxyl group was not essential for turnover it provided enhanced affinity. Reflecting the membrane bound nature of the enzyme a long (C(13)) hydrocarbon ceramide tail was necessary for both high affinity and turnover. Whilst the N-acyl chain also contributed to affinity, analogues lacking the amide linkage functioned as competitive inhibitors in both enzyme and cell-based assays. A model that accounts for this observation is proposed.


Assuntos
Ceramidas/química , Hexosiltransferases/química , Leishmania major/enzimologia , Sequência de Aminoácidos , Ceramidas/metabolismo , Hexosiltransferases/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Alinhamento de Sequência
19.
Int J Biochem Cell Biol ; 42(9): 1553-61, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20561598

RESUMO

Sphingolipids are key components of eukaryotic membranes, particularly the plasma membrane. The biosynthetic pathway for the formation of these lipid species is largely conserved. However, in contrast to mammals, which produce sphingomyelin, organisms such as the pathogenic fungi and protozoa synthesize inositol phosphorylceramide (IPC) as the primary phosphosphingolipid. The key step involves the reaction of ceramide and phosphatidylinositol catalysed by IPC synthase, an essential enzyme with no mammalian equivalent encoded by the AUR1 gene in yeast and recently identified functional orthologues in the pathogenic kinetoplastid protozoa. As such this enzyme represents a promising target for novel anti-fungal and anti-protozoal drugs. Given the paucity of effective treatments for kinetoplastid diseases such as leishmaniasis, there is a need to characterize the protozoan enzyme. To this end a fluorescent-based cell-free assay protocol in a 96-well plate format has been established for the Leishmania major IPC synthase. Using this system the kinetic parameters of the enzyme have been determined as obeying the double displacement model with apparent V(max)=2.31 pmol min(-1)U(-1). Furthermore, inhibitory substrate analogues have been identified. Importantly this assay is amenable to development for use in high-throughput screening applications for lead inhibitors and as such may prove to be a pivotal tool in drug discovery.


Assuntos
Ensaios Enzimáticos/métodos , Hexosiltransferases/metabolismo , Leishmania major/enzimologia , Proteínas de Protozoários/metabolismo , Cromatografia em Camada Fina
20.
Mol Biochem Parasitol ; 168(1): 16-23, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19545591

RESUMO

Sphingolipids are important components of eukaryotic membranes, particularly the plasma membrane, and are involved in a diverse array of signal transduction processes. In the Eukaryota the biosynthetic pathway for the formation of these lipid species is largely conserved. However, in contrast to mammals which produce sphingomyelin (SM), several pathogenic fungi and protozoa synthesize inositol phosphorylceramide (IPC) as the primary phosphosphingolipid. This process is catalyzed by the enzyme IPC synthase, a recognized target for anti-fungals encoded by the AUR1 gene in yeast. Recently, functional orthologues of the AUR1p have been identified in a group of insect vector-borne pathogenic protozoa, the Kinetoplastida, which are responsible for a range of so-called neglected diseases. Of these the Trypanosoma brucei species are the causative agents of human African trypanosomiasis in many of the most under-developed regions of Africa. The available treatments for these diseases are limited, of decreasing efficacy, and often demonstrate severe side-effects. Against this background the T. brucei sphingolipid synthase, an orthologue of the yeast AUR1p, may represent a promising target for novel anti-protozoals. Our studies identify an isoform of this protein as a novel bi-functional enzyme capable of catalyzing the synthesis of both IPC and SM, both known to be present in the parasite. Furthermore, the synthase is essential for parasite growth and can be inhibited by a known anti-fungal at low nanomolar levels in vitro. Most notably this drug demonstrates trypanocidal activity against cultured bloodstream form parasites. Thus, the T. brucei sphingolipid synthase represents a valid and promising drug target.


Assuntos
Hexosiltransferases/metabolismo , Proteínas de Protozoários/metabolismo , Esfingolipídeos/biossíntese , Trypanosoma brucei brucei/enzimologia , Animais , Antifúngicos/farmacologia , Sobrevivência Celular , Hexosiltransferases/antagonistas & inibidores , Hexosiltransferases/genética , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA