Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurol ; 269(7): 3597-3604, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35184210

RESUMO

BACKGROUND: Lafora disease (LD) is a neurodegenerative disorder featuring action and stimulus-sensitive myoclonus, epilepsy, and cognitive deterioration. Mutations in the EPM2A/EPM2B genes classically prove causative for the disease in most cases. Since full-field electroretinogram (ffERG) may reveal early-stage changes in a wide spectrum of diseases, we aimed to evaluate retinal cones and rods dysfunction in a cohort of Italian LD patients. METHODS: Patients with genetically confirmed LD were recruited and subjected to ffERG analysis following the International Society for Clinical Electrophysiology of Vision (ISCEV) protocol. RESULTS: Six patients aged between 13 and 26 years (mean 19.5 years) were included. The mean age at disease onset was 12.5 years with a mean disease duration of 7 years. The ffERG analysis revealed a global mild to severe generalized cones dysfunction in all patients. Linear correlation was identified between disease stage and the degree of cones and rods dysfunction, as well as between the type of mutation and the cones and rods dysfunction. CONCLUSIONS: This study brings further evidence of early retinal alterations in LD patients. The cones and rods dysfunction grade is related to disease duration. The ffERG is an important tool to determine the disease stage, allowing to evaluate either natural or treatment-related disease progression in a minimally invasive way.


Assuntos
Doença de Lafora , Epilepsias Mioclônicas Progressivas , Humanos , Doença de Lafora/genética , Mutação/genética , Epilepsias Mioclônicas Progressivas/genética , Fenótipo , Proteínas Tirosina Fosfatases não Receptoras/genética , Ubiquitina-Proteína Ligases/genética
2.
Life (Basel) ; 11(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34357061

RESUMO

Canine Lafora disease is a recessively inherited, rapidly progressing neurodegenerative disease caused by the accumulation of abnormally constructed insoluble glycogen Lafora bodies in the brain and other tissues due to the loss of NHL repeat containing E3 ubiquitin protein ligase 1 (NHLRC1). Dogs have a dodecamer repeat sequence within the NHLRC1 gene, which is prone to unstable (dynamic) expansion and loss of function. Progressive signs of Lafora disease include hypnic jerks, reflex and spontaneous myoclonus, seizures, vision loss, ataxia and decreased cognitive function. We studied five dogs (one Chihuahua, two French Bulldogs, one Griffon Bruxellois, one mixed breed) with clinical signs associated with canine Lafora disease. Identification of polyglucosan bodies (Lafora bodies) in myocytes supported diagnosis in the French Bulldogs; muscle areas close to the myotendinous junction and the myofascial union segment had the highest yield of inclusions. Postmortem examination of one of the French Bulldogs revealed brain Lafora bodies. Genetic testing for the known canine NHLRC1 mutation confirmed the presence of a homozygous mutation associated with canine Lafora disease. Our results show that Lafora disease extends beyond previous known breeds to the French Bulldog, Griffon Bruxellois and even mixed-breed dogs, emphasizing the likely species-wide nature of this genetic problem. It also establishes these breeds as animal models for the devastating human disease. Genetic testing should be used when designing breeding strategies to determine the frequency of the NHLRC1 mutation in affected breeds. Lafora diseases should be suspected in any older dog presenting with myoclonus, hypnic jerks or photoconvulsions.

3.
J Neurol Sci ; 424: 117409, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33773408

RESUMO

BACKGROUND: Lafora disease (LD) is characterized by progressive myoclonus, refractory epilepsy, and cognitive deterioration. This complex neurodegenerative condition is caused by pathogenic variants in EPM2A/EPM2B genes, encoding two essential glycogen metabolism enzymes known as laforin and malin. Long-term follow-up data are lacking. We describe the clinical features and genetic findings of a cohort of 26 Italian patients with a long clinical follow-up. METHODS: Patients with EPM2A/EPM2B pathogenic variants were identified by direct gene sequencing or gene panels with targeted re-sequencing. Disease progression, motor functions, and mental performance were assessed by a simplified disability scale. Spontaneous/action myoclonus severity was scored by the Magaudda Scale. RESULTS: Age range was 12.2-46.2 years (mean:25.53 ± 9.14). Age at disease onset ranged from 10 to 22 years (mean:14.04 ± 2.62). The mean follow-up period was 11.48 ± 7.8 years. Twelve out of the 26 (46%) patients preserved walking ability and 13 (50%) maintained speech. A slower disease progression with preserved ambulation and speech after ≥4 years of follow-up was observed in 1 (11%) out of the 9 (35%) EPM2A patients and in 6 (35%) out of the 17 (65%) EPM2B patients. Follow-up was >10 years in 7 (41.2%) EPM2B individuals, including two harbouring the homozygous p.(D146N) pathogenic variant. CONCLUSIONS: This study supports an overall worse disease outcome with severe deterioration of ambulation and speech in patients carrying EPM2A mutations. However, the delayed onset of disabling symptoms observed in the EPM2B subjects harbouring the p.(D146N) pathogenic variant suggests that the underlying causative variant may still influence LD severity.


Assuntos
Doença de Lafora , Adolescente , Adulto , Criança , Estudos de Associação Genética , Humanos , Itália , Doença de Lafora/genética , Pessoa de Meia-Idade , Mutação/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Ubiquitina-Proteína Ligases/genética , Adulto Jovem
4.
Expert Rev Neurother ; 20(4): 341-350, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32153206

RESUMO

Introduction: Progressive myoclonus epilepsies (PMEs) are a group of neurodegenerative diseases, invariably leading to severe disability or fatal outcome in a few years or decades. Nowadays, PMEs treatment remains challenging with a significant burden of disability for patients. Pharmacotherapy is primarily used to treat seizures, which impact patients' quality of life. However, new approaches have emerged in the last few years, which try to curb the neurological deterioration of PMEs through a better knowledge of the pathogenetic process. This is a review on the newest therapeutic options for the treatment of PMEs.Areas covered: Experimental and clinical results on novel therapeutic approaches for the different forms of PME are reviewed and discussed. Special attention is primarily focused on the efficacy and tolerability outcomes, trying to infer the role novel approaches may have in the future.Expert opinion: The large heterogeneity of disease-causing mechanisms prevents researchers from identifying a single approach to treat PMEs. Understanding of pathophysiologic processes is leading the way to targeted therapies, which, through enzyme replacement or underlying gene defect correction have already proved to potentially strike on neurodegeneration.


Assuntos
Epilepsias Mioclônicas Progressivas/terapia , Humanos , Epilepsias Mioclônicas Progressivas/etiologia , Epilepsias Mioclônicas Progressivas/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA