Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
1.
Ther Adv Hematol ; 15: 20406207241275376, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39290981

RESUMO

Background: GSK3326595 is a potent, selective, reversible protein arginine methyltransferase 5 (PRMT5) inhibitor under investigation for treatment of myelodysplastic syndrome (MDS), chronic myelomonocytic leukemia (CMML), and acute myeloid leukemia (AML). In preclinical models of AML, PRMT5 inhibition decreased proliferation and increased cell death, supporting additional clinical research in myeloid neoplasms. Objectives: To determine the clinical activity, safety, tolerability, dosing, additional measures of clinical activity, pharmacokinetics, and pharmacodynamics of GSK3326595. Design: In part 1 of this open-label, multicenter, multipart, phase I/II study, adults with relapsed/refractory myeloid neoplasms (e.g., MDS, CMML, and AML) received monotherapy with 400 or 300 mg oral GSK3326595 once daily. Study termination occurred prior to part 2 enrollment. Methods: Clinical activity was determined by the clinical benefit rate (CBR; proportion of patients achieving complete remission (CR), complete marrow remission (mCR), partial remission, stable disease (SD) >8 weeks, or hematologic improvement). Adverse events (AEs) were assessed by incidence and severity. Exploratory examination of spliceosome mutations was performed to determine the relationship between genomic profiles and clinical response to GSK3326595. Results: Thirty patients with a median age of 73.5 years (range, 47-90) were enrolled; 13 (43%) and 17 (57%) received 400 and 300 mg of GSK3326595, respectively. Five (17%) patients met CBR criteria: 4 (13%) with SD >8 weeks and 1 (3%) achieving mCR. Of five patients with clinical benefit: three had SRSF2 mutation, one U2AF1, and one was splicing factor wild-type. Frequent GSK3326595-related AEs were decreased platelet count (27%), dysgeusia (23%), fatigue (20%), and nausea (20%). GSK3326595 had rapid absorption, with a T max of approximately 2 h and a terminal half-life of 4-6 h. Conclusion: GSK3326595 monotherapy had limited clinical activity in heavily pretreated patients despite robust target engagement. The safety profile was broadly consistent with other published PRMT5 inhibitor studies. Trial registration: ClinicalTrials.gov: NCT03614728.


A clinical study to determine the effectiveness and safety of a medication called GSK3326595 in patients with cancers that affect the blood and bone marrow What is this study about? This summary provides the results of a study performed to see how safe and effective treatment with a once daily, oral medication called GSK3326595 was in patients with blood and bone marrow cancers. What are PRMT5 inhibitors? GSK3326595 belongs to a class of medications known as PRMT5 inhibitors. PRMT5 is an enzyme that is involved in many processes in cells. In cancers, too much PRMT5 activity can cause excessive cell growth. This study was performed to see if blocking of PRMT5 by GSK3326595 would help treat patients with blood and bone marrow cancers. What patients were in this study? The patients included in this study had previously received many other cancer treatments. Most patients with these types of cancers have few treatment options and usually pass away due to their disease. What were the results? Five of the 30 patients (17%) included in the study had a response to treatment, including 4 patients with stable disease for more than 8 weeks and 1 patient with complete marrow remission for approximately 8 months. Of the 93% of patients that completed the study, 83% died. Ultimately, all 30 patients discontinued study treatment, mostly due to progression of their disease. The most frequent side effects related to GSK3326595 treatment that occurred in ⩾20% of patients were a decrease in the number of cells that help the blood clot, change in taste bud sense, fatigue, and nausea. The side effects caused by GSK3326595 were similar to what is seen with other PRMT5 inhibitors. Treatment with GSK3326595 provided limited benefits in this patient population and no future studies are planned for GSK3326595 at this time. Additional studies are needed for PRMT5 inhibitors, including combination therapies, to determine which patients with blood and bone marrow cancers could potentially benefit from treatment.

2.
Sci Transl Med ; 16(766): eadn1285, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39321266

RESUMO

Acute myeloid leukemia (AML) is a devastating disease initiated and maintained by a rare subset of cells called leukemia stem cells (LSCs). LSCs are responsible for driving disease relapse, making the development of new therapeutic strategies to target LSCs urgently needed. The use of mass spectrometry-based metabolomics profiling has enabled the discovery of unique and targetable metabolic properties in LSCs. However, we do not have a comprehensive understanding of metabolite differences between LSCs and their normal counterparts, hematopoietic stem and progenitor cells (HSPCs). In this study, we used an unbiased mass spectrometry-based metabolomics analysis to define differences in metabolites between primary human LSCs and HSPCs, which revealed that LSCs have a distinct metabolome. Spermidine was the most enriched metabolite in LSCs compared with HSPCs. Pharmacological reduction of spermidine concentrations decreased LSC function but spared normal HSPCs. Polyamine depletion also decreased leukemic burden in patient-derived xenografts. Mechanistically, spermidine depletion induced LSC myeloid differentiation by decreasing eIF5A-dependent protein synthesis, resulting in reduced expression of a select subset of proteins. KAT7, a histone acetyltransferase, was one of the top candidates identified to be down-regulated by spermidine depletion. Overexpression of KAT7 partially rescued polyamine depletion-induced decreased colony-forming ability, demonstrating that loss of KAT7 is an essential part of the mechanism by which spermidine depletion targets AML clonogenic potential. Together, we identified and mechanistically dissected a metabolic vulnerability of LSCs that has the potential to be rapidly translated into clinical trials to improve outcomes for patients with AML.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Espermidina , Animais , Humanos , Espermidina/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Modelos Animais de Doenças , Diferenciação Celular , Metabolômica , Metaboloma , Células-Tronco Hematopoéticas/metabolismo , Acetiltransferases
3.
EBioMedicine ; 108: 105316, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39293215

RESUMO

BACKGROUND: Acute myeloid leukaemia (AML) is a bone marrow malignancy with poor prognosis. One of several treatments for AML is midostaurin combined with intensive chemotherapy (MIC), currently approved for FLT3 mutation-positive (FLT3-MP) AML. However, many patients carrying FLT3 mutations are refractory or experience an early relapse following MIC treatment, and might benefit more from receiving a different treatment. Development of a stratification method that outperforms FLT3 mutational status in predicting MIC response would thus benefit a large number of patients. METHODS: We employed mass spectrometry phosphoproteomics to analyse 71 diagnosis samples of 47 patients with FLT3-MP AML who subsequently received MIC. We then used machine learning to identify biomarkers of response to MIC, and validated the resulting predictive model in two independent validation cohorts (n = 20). FINDINGS: We identified three distinct phosphoproteomic AML subtypes amongst long-term survivors. The subtypes showed similar duration of MIC response, but different modulation of AML-implicated pathways, and exhibited distinct, highly-predictive biomarkers of MIC response. Using these biomarkers, we built a phosphoproteomics-based predictive model of MIC response, which we called MPhos. When applied to two retrospective real-world patient test cohorts (n = 20), MPhos predicted MIC response with 83% sensitivity and 100% specificity (log-rank p < 7∗10-5, HR = 0.005 [95% CI: 0-0.31]). INTERPRETATION: In validation, MPhos outperformed the currently-used FLT3-based stratification method. Our findings have the potential to transform clinical decision-making, and highlight the important role that phosphoproteomics is destined to play in precision oncology. FUNDING: This work was funded by Innovate UK grants (application numbers: 22217 and 10054602) and by Kinomica Ltd.

4.
Eur J Haematol ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39113600

RESUMO

Nucleophosmin-1 (NPM1)-mutated AML is a molecularly defined subtype typically associated with favorable treatment response and prognosis; however, its prognostic significance in AML evolving from an antecedent chronic myeloid malignancy is unknown. This study's primary objective was to determine the impact of mutated NPM1 on the prognosis of AML evolving from an antecedent chronic myeloid malignancy. We conducted a retrospective chart review including patients with NPM1-mutated de novo and sAML. sAML was defined as those with a preceding chronic-phase myeloid malignancy before diagnosis of AML. Of 575 NPM1-mutated patients eligible for inclusion in our study, 51 (8.9%) patients were considered to have sAML. The median time from diagnosis of NPM1-mutated chronic myeloid malignancy to sAML evolution was 3.6 months (0.5-79.3 months). No significant differences in leukemia-free (2-year LKFS 52.0% vs. 51.2%, p = .9922) or overall survival (2-year OS 56.3% vs. 49.4%, p = .4246) were observed between patients with NPM1-mutated de novo versus sAML. Our study suggests that evolution from a preceding myeloid malignancy is not a significant predictor of poor prognosis in the setting of an NPM1 mutation. Our study demonstrated a short time to progression to sAML in most patients, which further supports the consideration of NPM1 as an AML-defining mutation.

5.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928225

RESUMO

Acute myeloid leukemia (AML) is an aggressive blood cancer. With low survival rates, new drug targets are needed to improve treatment regimens and patient outcomes. Pseudolaric acid B (PAB) is a plant-derived bioactive compound predicted to interact with cluster of differentiation 147 (CD147/BSG). CD147 is a transmembrane glycoprotein overexpressed in various malignancies with suggested roles in regulating cancer cell survival, proliferation, invasion, and apoptosis. However, the detailed function of PAB in AML remains unknown. In this study, AML cell lines and patient-derived cells were used to show that PAB selectively targeted AML (IC50: 1.59 ± 0.47 µM). Moreover, proliferation assays, flow cytometry, and immunoblotting confirmed that PAB targeting of CD147 resulted in AML cell apoptosis. Indeed, the genetic silencing of CD147 significantly suppressed AML cell growth and attenuated PAB activity. Overall, PAB imparts anti-AML activity through transmembrane glycoprotein CD147.


Assuntos
Apoptose , Basigina , Proliferação de Células , Diterpenos , Leucemia Mieloide Aguda , Humanos , Basigina/metabolismo , Basigina/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Diterpenos/farmacologia , Sobrevivência Celular/efeitos dos fármacos
6.
Cancers (Basel) ; 16(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38730645

RESUMO

BACKGROUND: Gene rearrangements affecting KMT2A are frequent in acute myeloid leukemia (AML) and are often associated with a poor prognosis. KMT2A gene fusions are often detected by chromosome banding analysis and confirmed by fluorescence in situ hybridization. However, small intragenic insertions, termed KMT2A partial tandem duplication (KMT2A-PTD), are particularly challenging to detect using standard molecular and cytogenetic approaches. METHODS: We have validated the use of a custom hybrid-capture-based next-generation sequencing (NGS) panel for comprehensive profiling of AML patients seen at our institution. This NGS panel targets the entire consensus coding DNA sequence of KMT2A. To deduce the presence of a KMT2A-PTD, we used the relative ratio of KMT2A exons coverage. We sought to corroborate the KMT2A-PTD NGS results using (1) multiplex-ligation probe amplification (MLPA) and (2) optical genome mapping (OGM). RESULTS: We analyzed 932 AML cases and identified 41 individuals harboring a KMT2A-PTD. MLPA, NGS, and OGM confirmed the presence of a KMT2A-PTD in 22 of the cases analyzed where orthogonal testing was possible. The two false-positive KMT2A-PTD calls by NGS could be explained by the presence of cryptic structural variants impacting KMT2A and interfering with KMT2A-PTD analysis. OGM revealed the nature of these previously undetected gene rearrangements in KMT2A, while MLPA yielded inconclusive results. MLPA analysis for KMT2A-PTD is limited to exon 4, whereas NGS and OGM resolved KMT2A-PTD sizes and copy number levels. CONCLUSIONS: KMT2A-PTDs are complex gene rearrangements that cannot be fully ascertained using a single genomic platform. MLPA, NGS panels, and OGM are complementary technologies applied in standard-of-care testing for AML patients. MLPA and NGS panels are designed for targeted copy number analysis; however, our results showed that integration of concurrent genomic alterations is needed for accurate KMT2A-PTD identification. Unbalanced chromosomal rearrangements overlapping with KMT2A can interfere with the diagnostic sensitivity and specificity of copy-number-based KMT2A-PTD detection methodologies.

7.
iScience ; 27(4): 109443, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38558935

RESUMO

Spliceosome machinery mutations are common early mutations in myeloid malignancies; however, effective targeted therapies against them are still lacking. In the current study, we used an in vitro high-throughput drug screen among four different isogenic cell lines and identified RKI-1447, a Rho-associated protein kinase inhibitor, as selective cytotoxic effector of SRSF2 mutant cells. RKI-1447 targeted SRSF2 mutated primary human samples in xenografts models. RKI-1447 induced mitotic catastrophe and induced major reorganization of the microtubule system and severe nuclear deformation. Transmission electron microscopy and 3D light microscopy revealed that SRSF2 mutations induce deep nuclear indentation and segmentation that are apparently driven by microtubule-rich cytoplasmic intrusions, which are exacerbated by RKI-1447. The severe nuclear deformation in RKI-1447-treated SRSF2 mutant cells prevents cells from completing mitosis. These findings shed new light on the interplay between microtubules and the nucleus and offers new ways for targeting pre-leukemic SRSF2 mutant cells.

8.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659944

RESUMO

Despite early optimism, therapeutics targeting oxidative phosphorylation (OxPhos) have faced clinical setbacks, stemming from their inability to distinguish healthy from cancerous mitochondria. Herein, we describe an actionable bioenergetic mechanism unique to cancerous mitochondria inside acute myeloid leukemia (AML) cells. Unlike healthy cells which couple respiration to the synthesis of ATP, AML mitochondria were discovered to support inner membrane polarization by consuming ATP. Because matrix ATP consumption allows cells to survive bioenergetic stress, we hypothesized that AML cells may resist cell death induced by OxPhos damaging chemotherapy by reversing the ATP synthase reaction. In support of this, targeted inhibition of BCL-2 with venetoclax abolished OxPhos flux without impacting mitochondrial membrane potential. In surviving AML cells, sustained polarization of the mitochondrial inner membrane was dependent on matrix ATP consumption. Mitochondrial ATP consumption was further enhanced in AML cells made refractory to venetoclax, consequential to downregulations in both the proton-pumping respiratory complexes, as well as the endogenous F1-ATPase inhibitor ATP5IF1. In treatment-naive AML, ATP5IF1 knockdown was sufficient to drive venetoclax resistance, while ATP5IF1 overexpression impaired F1-ATPase activity and heightened sensitivity to venetoclax. Collectively, our data identify matrix ATP consumption as a cancer-cell intrinsic bioenergetic vulnerability actionable in the context of mitochondrial damaging chemotherapy.

9.
Intensive Care Med ; 50(4): 561-572, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38466402

RESUMO

PURPOSE: Patients with hematologic malignancy (HM) commonly develop critical illness. Their long-term survival and functional outcomes have not been well described. METHODS: We conducted a prospective, observational study of HM patients admitted to seven Canadian intensive care units (ICUs) (2018-2020). We followed survivors at 7 days, 6 months and 12 months following ICU discharge. The primary outcome was 12-month survival. We evaluated functional outcomes at 6 and 12 months using the functional independent measure (FIM) and short form (SF)-36 as well as variables associated with 12-month survival. RESULTS: We enrolled 414 patients including 35% women. The median age was 61 (interquartile range, IQR: 52-69), median Sequential Organ Failure Assessment (SOFA) score was 9 (IQR: 6-12), and 22% had moderate-severe frailty (clinical frailty scale [CFS] ≥ 6). 51% had acute leukemia, 38% lymphoma/multiple myeloma, and 40% had received a hematopoietic stem cell transplant (HCT). The most common reasons for ICU admission were acute respiratory failure (50%) and sepsis (40%). Overall, 203 (49%) were alive 7 days post-ICU discharge (ICU survivors). Twelve-month survival of the entire cohort was 21% (43% across ICU survivors). The proportion of survivors with moderate-severe frailty was 42% (at 7 days), 14% (6 months), and 8% (12 months). Median FIM at 7 days was 80 (IQR: 50-109). Physical function, pain, social function, mental health, and emotional well-being were below age- and sex-matched population scores at 6 and 12 months. Frailty, allogeneic HCT, kidney injury, and cardiac complications during ICU were associated with lower 12- month survival. CONCLUSIONS: 49% of all HM patients were alive at 7 days post-ICU discharge, and 21% at 12 months. Survival varied based upon hematologic diagnosis and frailty status. Survivors had important functional disability and impairment in emotional, physical, and general well-being.


Assuntos
Fragilidade , Neoplasias Hematológicas , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Estudos Prospectivos , Estado Terminal , Fragilidade/diagnóstico , Canadá/epidemiologia , Unidades de Terapia Intensiva
10.
Hematology ; 29(1): 2329027, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38526239

RESUMO

This retrospective report presents the outcomes and adverse events (AEs) observed in 73 patients aged 60 years or older diagnosed with Philadelphia Chromosome-negative Acute Lymphoblastic Leukemia (Ph-negative ALL) treated with a pediatric-inspired protocol incorporating either Pegylated (PEG-ASP) or Native Asparaginase (EC-ASP). Notably, 61% of patients experienced AEs of Grade III-IV severity. The most prevalent AEs included thrombosis (35.6%), febrile neutropenia (38.4%), and transaminitis (34.2%). AEs did not translate into significant differences concerning overall survival, leukemia-free survival, or early mortality. Furthermore, we observed a reduction in early mortality rates (11% vs. 20%) and an increase in median overall survival (54 vs. 48 months) compared to our previous data. These findings suggest that the utilization of a pediatric-inspired chemotherapy protocol, with ASP, is an effective and well-tolerated therapeutic option for older patients with Ph-negative ALL. However, it emphasizes the importance of diligent monitoring and close follow-up throughout treatment.


Assuntos
Asparaginase , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Idoso , Asparaginase/efeitos adversos , Estudos Retrospectivos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Polietilenoglicóis/efeitos adversos
11.
J Clin Med ; 13(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38541929

RESUMO

Purpose: To compare the accuracy of ultra-low-dose (uLDCT) to standard-of-care low-dose chest CT (LDCT) in the detection of fungal infection in immunocompromised (IC) patients. Method and Materials: One hundred IC patients had paired chest CT scans performed with LDCT followed by uLDCT. The images were independently reviewed by three chest radiologists who assessed the image quality (IQ), diagnostic confidence, and detection of major (macro nodules, halo sign, cavitation, consolidation) and minor (4-10 mm nodules, ground-glass opacity) criteria for fungal disease using a five-point Likert score. Discrepant findings were adjudicated by a fourth chest radiologist. Box-whisker plots were used to analyze IQ and diagnostic confidence. Inter-rater reliability was assessed using interclass correlation coefficients (ICCs). The statistical difference between LDCT and uLDCT results was assessed using Wilcoxon paired test. Results: Lung reconstructions had IQ and diagnostic confidence scores (mean ± std) of 4.52 ± 0.47 and 4.63 ± 0.51 for LDCT and 3.85 ± 0.77 and 4.01 ± 0.88 for uLDCT. The images were clinically acceptable except for uLDCT in obese patients (BMI ≥ 30 kg/m2), which had an IQ ranking from poor to excellent (scores 1 to 5). The accuracy in detecting major and minor radiological findings with uLDCT was 96% and 84% for all the patients. The inter-rater agreements were either moderate, good, or excellent, with ICC values of 0.51-0.96. There was no significant statistical difference between the uLDCT and LDCT ICC values (p = 0.25). The effective dose for uLDCT was one quarter that of LDCT (CTDIvol = 0.9 mGy vs. 3.7 mGy). Conclusions: Thoracic uLDCT, at a 75% dose reduction, can replace LDCT for the detection of fungal disease in IC patients with BMI < 30.0 kg/m2.

12.
Blood Adv ; 8(12): 3013-3026, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38547431

RESUMO

ABSTRACT: Allogeneic double-negative T cells (DNTs) are a rare T-cell subset that effectively target acute myeloid leukemia (AML) without inducing graft-versus-host disease in an allogeneic setting. A phase 1 clinical trial demonstrated the feasibility, safety, and potential efficacy of allogeneic DNT therapy among patients with relapsed AML. However, the molecular mechanisms of DNT-mediated cytotoxicity against AML remain elusive. Thus, we used a flow cytometry-based high throughput screening to compare the surface molecule expression profile on DNTs during their interaction with DNT-susceptible or -resistant AML cells and identified a tumor necrosis factor α (TNFα)-dependent cytotoxic pathway in DNT-AML interaction. TNFα secreted by DNTs, upon encountering susceptible AML targets, sensitized AML cells to DNT-mediated killing, including those otherwise resistant to DNTs. Mechanistically, TNFα upregulated ICAM-1 on AML cells through a noncanonical JAK1-dependent pathway. DNTs then engaged with AML cells more effectively through an ICAM-1 receptor, lymphocyte function-associated antigen 1, leading to enhanced killing. These results reveal a TNFα-JAK1-ICAM-1 axis in DNT-mediated cytotoxicity against AML to improve therapeutic efficacy.


Assuntos
Molécula 1 de Adesão Intercelular , Janus Quinase 1 , Leucemia Mieloide Aguda , Fator de Necrose Tumoral alfa , Humanos , Leucemia Mieloide Aguda/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Janus Quinase 1/metabolismo , Citotoxicidade Imunológica , Transdução de Sinais , Linhagem Celular Tumoral , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/imunologia
13.
Blood Adv ; 8(10): 2361-2372, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38447114

RESUMO

ABSTRACT: Advancements in genomics are transforming the clinical management of chronic myeloid leukemia (CML) toward precision medicine. The impact of somatic mutations on treatment outcomes is still under debate. We studied the association of somatic mutations in epigenetic modifier genes and activated signaling/myeloid transcription factors (AS/MTFs) with disease progression and treatment failure in patients with CML after tyrosine kinase inhibitor (TKI) therapy. A total of 394 CML samples were sequenced, including 254 samples collected at initial diagnosis and 140 samples taken during follow-up. Single-molecule molecular inversion probe (smMIP)-based next-generation sequencing (NGS) was conducted targeting recurrently mutated loci in 40 genes, with a limit of detection of 0.2%. Seventy mutations were detected in 57 diagnostic samples (22.4%), whereas 64 mutations were detected in 39 of the follow-up samples (27.9%). Carrying any mutation at initial diagnosis was associated with worse outcomes after TKI therapy, particularly in AS/MTF genes. Patients having these mutations at initial diagnosis and treated with imatinib showed higher risks of treatment failure (hazard ratio, 2.53; 95% confidence interval, 1.13-5.66; P = .0239). The adverse prognostic impact of the mutations was not clear for patients treated with second-generation TKIs. The multivariate analysis affirmed that mutations in AS/MTF genes independently serve as adverse prognostic factors for molecular response, failure-free survival, and progression risk. Additionally, there was an observable nonsignificant trend indicating a heightened risk of progression to advanced disease and worse overall survival. In conclusion, mutations in the AS/MTF genes using smMIP-based NGS can help identify patients with a potential risk of both treatment failure and progression and may help upfront TKI selection.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Mutação , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/mortalidade , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Masculino , Pessoa de Meia-Idade , Feminino , Adulto , Idoso , Transdução de Sinais , Inibidores de Proteínas Quinases/uso terapêutico , Prognóstico , Fatores de Transcrição/genética , Resultado do Tratamento , Sequenciamento de Nucleotídeos em Larga Escala , Adulto Jovem , Idoso de 80 Anos ou mais , Progressão da Doença
15.
Ann Hematol ; 103(4): 1187-1196, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38291275

RESUMO

Measurable residual disease (MRD) monitoring independently predicts long-term outcomes in patients with acute myeloid leukemia (AML). Of the various modalities available, multiparameter flow cytometry-based MRD analysis is widely used and relevant for patients without molecular targets. In the transplant (HCT) setting, the presence of MRD pre-HCT is associated with adverse outcomes. MRD-negative remission status pre-HCT was also associated with longer overall (OS) and progression-free survival and a lower risk of relapse. We hypothesize that the combination of disease risk and MRD at the time of first complete remission (CR1) could identify patients according to the benefit gained from HCT, especially for intermediate-risk patients. We performed a retrospective analysis comparing the outcomes of HCT versus non-HCT therapies based on MRD status in AML patients who achieved CR1. Time-dependent analysis was applied considering time-to-HCT as a time-dependent covariate and compared HCT versus non-HCT outcomes according to MRD status at CR1. Among 336 patients assessed at CR1, 35.1% were MRD positive (MRDpos) post-induction. MRDpos patients benefitted from HCT with improved OS and relapse-free survival (RFS), while no benefit was observed in MRDneg patients. In adverse-risk patients, HCT improved OS (HR for OS 0.55; p = 0.05). In intermediate-risk patients, HCT benefit was not significant for OS and RFS. Intermediate-risk MRDpos patients were found to have benefit from HCT with improved OS (HR 0.45, p = 0.04), RFS (HR 0.46, p = 0.02), and CIR (HR 0.41, p = 0.02). Our data underscore the benefit of HCT in adverse risk and MRDpos intermediate-risk AML patients.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Citometria de Fluxo , Estudos Retrospectivos , Transplante Homólogo , Recidiva , Neoplasia Residual , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Prognóstico
16.
Blood Adv ; 8(7): 1760-1771, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38286462

RESUMO

ABSTRACT: The proposed fifth edition of the World Health Organization classification of hematolymphoid tumors (WHO-HAEM5) and International Consensus Classification (ICC) provide different definitions of acute myeloid leukemia with myelodysplasia-related genetics (AML-MR). We conducted a retrospective study which included a cohort of 432 patients, with 354 patients fulfilling WHO-HAEM5 criteria for WHO-AML-MR or 276 patients fulfilling ICC criteria for ICC-AML-MR by gene mutation or cytogenetics (ICC-AML-MR-M/CG). The clinicopathological features were largely similar, irrespective of the classification used, except for higher rates of complex karyotype, monosomy 17, TP53 mutations, and fewer RUNX1 mutations in the WHO-AML-MR group. TP53 mutations were associated with distinct clinicopathological features and dismal outcomes (hazard ratio [HR], 2.98; P < .001). ICC-AML-MR-M/CG group had superior outcome compared with the WHO-AML-MR group (HR, 0.80, P = .032), largely in part due to defining TP53 mutated AML as a standalone entity. In the intensively-treated group, WHO-AML-MR had significantly worse outcomes than AML by differentiation (HR, 1.97; P = .024). Based on ICC criteria, ICC-AML-MR-M/CG had more inferior outcomes compared to AML not otherwise specified (HR, 2.11; P = .048 and HR, 2.55; P = .028; respectively). Furthermore, changing the order of genetic abnormalities defining AML-MR (ie, by gene mutations or cytogenetics) did not significantly affect clinical outcomes. ICC-AML-MR-M/CG showed similar outcomes regardless of the order of assignment. We propose to harmonize the 2 classifications by excluding TP53 mutations from WHO-HAEM5 defined AML-MR group and combining AML-MR defined by gene mutations and cytogenetics to form a unified group.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Estudos Retrospectivos , Consenso , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/tratamento farmacológico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Organização Mundial da Saúde
17.
Blood Adv ; 8(5): 1281-1294, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38170760

RESUMO

ABSTRACT: Transformation of BCR::ABL1-negative myeloproliferative neoplasms (MPN) to an accelerated or blast phase is associated with poor outcomes. The efficacy of acute myeloid leukemia (AML)-type intensive and nonintensive hypomethylating agent-based regimens is not well studied. We therefore performed a retrospective analysis of patients with MPN-AP/BP (N = 138) treated with intensive (N = 81) and nonintensive (N = 57) blast-reduction strategies. We used clinically relatable response criteria developed at the Princess Margaret Cancer Centre. The overall best response, comprising complete remission (CR), complete remission with incomplete hematologic recovery (CRi), and reversion to chronic phase MPN (cMPN), in the intensive and nonintensive groups was 77% (62 of 81) and 39% (21 of 54), respectively. Similar overall best response rates were observed in patients receiving induction with daunorubicin combined with cytarabine arabinoside (daunorubicin + ara-C) (74% [23 of 31]) or FLAG-IDA/NOVE-HiDAC (78% [39 of 50], P = .78). However, patients receiving daunorubicin + ara-C more often required second inductions (29% [9 of 31] vs 4% [2 of 50], P = .002). Most responses in the entire cohort were reversions to cMPN (55 of 83 [66%]). CR and CRi comprised 30% (25 of 83) and 4% (3 of 83) of responses, respectively. Mutations in TP53 (overall response [OR] 8.2 [95% confidence interval [CI] 2.01, 37.1], P = .004) and RAS pathway (OR 5.1 [95%CI 1.2, 23.7], P = .03) were associated with inferior treatment response for intensively treated patients, and poorer performance status (Eastern Cooperative Oncology Group) was associated with inferior treatment response in both intensively (OR 10.4 [95% CI 2.0, 78.5], P = .009) and nonintensively treated groups (OR 12 [95% CI 2.04, 230.3], P = .02). In patients with paired samples before and after therapy (N = 26), there was a significant residual mutation burden remaining irrespective of response to blast-reduction therapy.


Assuntos
Transtornos Mieloproliferativos , Humanos , Resultado do Tratamento , Estudos Retrospectivos , Transtornos Mieloproliferativos/genética , Citarabina/uso terapêutico , Daunorrubicina
18.
Br J Haematol ; 204(1): 206-220, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37726227

RESUMO

Progression to aggressive secondary acute myeloid leukaemia (sAML) poses a significant challenge in the management of myeloproliferative neoplasms (MPNs). Since the physiopathology of MPN is closely linked to the activation of interferon (IFN) signalling and that AML initiation and aggressiveness is driven by leukaemia stem cells (LSCs), we investigated these pathways in MPN to sAML progression. We found that high IFN signalling correlated with low LSC signalling in MPN and AML samples, while MPN progression and AML transformation were characterized by decreased IFN signalling and increased LSC signature. A high LSC to IFN expression ratio in MPN patients was associated with adverse clinical prognosis and higher colony forming potential. Moreover, treatment with hypomethylating agents (HMAs) activates the IFN signalling pathway in MPN cells by inducing a viral mimicry response. This response is characterized by double-stranded RNA (dsRNA) formation and MDA5/RIG-I activation. The HMA-induced IFN response leads to a reduction in LSC signature, resulting in decreased stemness. These findings reveal the frequent evasion of viral mimicry during MPN-to-sAML progression, establish the LSC-to-IFN expression ratio as a progression biomarker, and suggests that HMAs treatment can lead to haematological response in murine models by re-activating dsRNA-associated IFN signalling.


Assuntos
Leucemia Mieloide Aguda , Transtornos Mieloproliferativos , Humanos , Animais , Camundongos , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/complicações , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Prognóstico , Biomarcadores , Interferons/uso terapêutico
19.
Exp Hematol ; 130: 104135, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072134

RESUMO

Epigenetic regulators, such as the polycomb repressive complex 2 (PRC2), play a critical role in both normal development and carcinogenesis. Mutations and functional dysregulation of PRC2 complex components, such as EZH2, are implicated in various forms of cancer and associated with poor prognosis. This study investigated the epigenetic vulnerabilities of acute myeloid leukemia (AML) and myelodysplastic/myeloproliferative disorders (MDS/MPN) by performing a chemical probe screen in patient cells. Paradoxically, we observed increased sensitivity to EZH2 and embryonic ectoderm development (EED) inhibitors in AML and MDS/MPN patient cells harboring EZH2 mutations. Expression analysis indicated that EZH2 inhibition elicited upregulation of pathways responsible for cell death and growth arrest, specifically in patient cells with mutant EZH2. The identified EZH2 mutations had drastically reduced catalytic activity, resulting in lower cellular H3K27me3 levels, and were associated with decreased EZH2 and PRC2 component EED protein levels. Overall, this study provides an important understanding of the role of EZH2 dysregulation in blood cancers and may indicate disease etiology for these poor prognosis AML and MDS/MPN cases.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Leucemia Mieloide Aguda , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Leucemia Mieloide Aguda/genética , Epigênese Genética , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA