Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Inorg Chem ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148298

RESUMO

Polyoxometalates (POMs) with various coordination fashions are versatile ligands for constructing single-ion magnets (SIMs), but enforcing POM-SIMs with a specific geometry remains a synthetic challenge. Herein, we synthesized a POM-cocrystallized DyIII-SIM [Dy(OPPh3)4(H2O)3][PW12O40]·4EtOH (1Dy) and a POM-ligated DyIII-SIM [{Dy(OPPh3)3(H2O)3}{PW12O40}]·Ph3PO·H2O (2Dy) with pentagonal bipyramidal local coordination geometry. Magnetic measurements indicate that 1Dy displays field-induced single-molecule magnet (SMM) behavior and the relaxation is dominated by under-barrier processes. 2Dy exhibits spin-lattice relaxation at a broader temperature region with a reversal barrier over 300 K. Magneto-structural analysis reveals that the enhancement of SMM behavior originated from the equatorial replacement of Ph3PO by POM, which strengthens the axial anisotropy in 2Dy. Luminescent experiments indicate that the characteristic DyIII emissions of 1Dy are covered up by the strong π-π* emission of Ph3PO at low-temperature regions. As for 2Dy, partial DyIII emission persists thanks to the antenna effect between DyIII and POM.

2.
Oncogene ; 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39154122

RESUMO

The dysregulation of long non-coding RNAs (lncRNAs) are involved in regulating tumor progression in multiple manner. However, little is known about whether lncRNA is involved in the translation regulation of proteins. Here, we identified that the suppressor of inflammatory macrophage apoptosis lncRNA (SIMALR) was highly expressed in nasopharyngeal carcinoma (NPC) tissues by analyzing the lncRNA microarray. Clinically, the high expression of SIMALR served as an independent predictor for inferior prognosis in NPC patients. SIMALR functioned as an oncogenic lncRNA that promoted the proliferation and metastasis of NPC cells in vitro and in vivo. Mechanistically, SIMALR served as a critical accelerator of protein synthesis by binding to eEF1A2 (eukaryotic translation elongation factor 1 alpha 2), one of the most crucial regulators in the translation machinery of the eukaryotic cells, and enhancing its endogenous GTPase activity. Furthermore, SIMALR mediated the activation of eEF1A2 phosphorylation to accelerate the translation of ITGB4/ITGA6, ultimately promoting the malignant phenotype of NPC cells. In addition, N-acetyltransferase 10 (NAT10) enhanced the stability of SIMALR and caused its overexpression in NPC through the N4-acetylcytidine (ac4C) modification. In sum, our results illustrate SIMALR functions as an accelerator for protein translation and highlight the oncogenic role of NAT10-SIMALR-eEF1A2-ITGB4/6 axis in NPC.

3.
Zhongguo Gu Shang ; 37(7): 725-31, 2024 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-39104076

RESUMO

OBJECTIVE: To investigate the effect of Ilizarov technique combined with rotational center dome-shaped osteotomy in the treatment of juvenile distal femoral valgus deformity. METHODS: A retrospective study was conducted to analyze the clinical data of 11 patients with valgus deformity of the distal femur who had been admitted and followed up completely from January 2016 to October 2020. There were 7 males and 4 females. The 6 patients were on the right side and 5 patients were on the left side. The age ranged from 10 to 14 years old. The center of roration of angulation(CORA) was identified at the distal femur deformity, and dome-shaped osteotomy was performed with the CORA as the midpoint. The annular external fixator was installed according to the needle threading principle of Ilizarov external fixation, and the distal femur was cut off. The valgus deformity under visual inspection of the distal femur was corrected immediately, and the external fixator was fixed and maintained. The residual deformity and shortening were corrected according to the force line and length of the lower limbs suggested by the weight-bearing full-length anteroposterior and lateral X-rays of both lower limbs. RESULTS: All 11 patients were followed up for 13 to 25 months. The time of wearing external fixator was 12 to 17 weeks. In the last follow-up, both lower limbs were measured by the weight-bearing full-length anteroposterior and lateral X-rays, and the length of both lower limbs of 11 patients were equal, and the deformities were corrected. The score of hospital for special surgery (HSS) was used to evaluate the knee function, all of which were excellent. CONCLUSION: The Ilizarov technique was applied in the treatment of distal femoral valgus deformity in adolescents using a rotating central dome-shaped osteotomy. Visual femoral valgus deformity was corrected immediately during the operation. After the operation, residual deformities and shortening were dynamically adjusted and corrected according to the force line and shortening degree of lower extremities indicated by the weight-bearing anteroposterior and lateral radiographs of both lower limbs, with minimal damage and fast recovery.


Assuntos
Fêmur , Técnica de Ilizarov , Osteotomia , Humanos , Feminino , Masculino , Osteotomia/métodos , Adolescente , Criança , Fêmur/cirurgia , Estudos Retrospectivos , Rotação
4.
Angew Chem Int Ed Engl ; : e202413805, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140900

RESUMO

Organic photothermal conversion materials hold immense promise for various applications owing to their structural flexibility. Recent research has focused on enhancing near-infrared (NIR) absorption and mitigating radiative transition processes. In this study, we have developed a viable approach to the design of photothermal conversion materials through the construction of ternary organic cocrystals, by introducing a third component as a molecular blocker and motion unit into a binary donor-acceptor system. Superstructural and photophysical properties of the ternary cocrystals were characterized using various spectroscopic techniques. The role of the molecular blocker in radical stabilization and photothermal conversion were demonstrated. Intriguingly, the motions of the entire pyrene molecules in the cocrystal have been observed by variable temperature single-crystal X-ray diffraction results. The excellent performance of ternary cocrystal as a photothermal material was validated through efficient NIR-II photothermal and solar-driven water evaporation experiments. The efficiency of water evaporation reached 88.7 %, with a corresponding evaporation rate of 1.29 kg m-2 h-1, representing excellent performance among pure organic small molecular photothermal conversion materials. Our research underscores the introduction of molecular blockers and motion units to stabilize radicals and produce outstanding photothermal conversion materials, offering new pathways for developing efficient and stable photothermal conversion materials.

5.
Angew Chem Int Ed Engl ; : e202412643, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101718

RESUMO

While metal nanoparticles (NPs) have demonstrated their great potential in catalysis, introducing chiral microenvironment around metal NPs to achieve efficient conversion and high enantioselectivity remains a long-standing challenge. In this work, tiny Rh NPs, modified by chiral diene ligands (Lx) bearing diverse functional groups, are incorporated into a covalent organic framework (COF) for the asymmetric 1,4-addition reactions between arylboronic acids and nitroalkenes. Though Rh NPs hosted in the COF are inactive, decorating Rh NPs with Lx creates the active Rh-Lx interface and induces high activity. Moreover, chiral microenvironment modulation around Rh NPs by altering the groups on chiral diene ligands greatly optimizes the enantioselectivity (up to 95.6% ee). Mechanistic investigations indicate that the formation of hydrogen-bonding interaction between Lx and nitroalkenes plays critical roles in the resulting enantioselectivity. This work highlights the significance of chiral microenvironment modulation around metal NPs by chiral ligand decoration for heterogeneous asymmetric catalysis.

6.
Se Pu ; 42(7): 702-710, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-38966978

RESUMO

Organic acid metabolites exhibit acidic properties. These metabolites serve as intermediates in major carbon metabolic pathways and are involved in several biochemical pathways, including the tricarboxylic acid (TCA) cycle and glycolysis. They also regulate cellular activity and play crucial roles in epigenetics, tumorigenesis, and cellular signal transduction. Knowledge of the binding proteins of organic acid metabolites is crucial for understanding their biological functions. However, identifying the binding proteins of these metabolites has long been a challenging task owing to the transient and weak nature of their interactions. Moreover, traditional methods are unsuitable for the structural modification of the ligands of organic acid metabolites because these metabolites have simple and similar structures. Even minor structural modifications can significantly affect protein interactions. Thermal proteome profiling (TPP) provides a promising avenue for identifying binding proteins without the need for structural modifications. This approach has been successfully applied to the identification of the binding proteins of several metabolites. In this study, we investigated the binding proteins of two TCA cycle intermediates, i.e., succinate and fumarate, and lactate, an end-product of glycolysis, using the matrix thermal shift assay (mTSA) technique. This technique involves combining single-temperature (52 ℃) TPP and dose-response curve analysis to identify ligand-binding proteins with high levels of confidence and determine the binding affinity between ligands and proteins. To this end, HeLa cells were lysed, followed by protein desalting to remove endogenous metabolites from the cell lysates. The desalted cell lysates were treated with fumarate or succinate at final concentrations of 0.004, 0.04, 0.4, and 2 mmol/L in the experimental groups or 2 mmol/L sodium chloride in the control group. Considering that the cellular concentration of lactate can be as high as 2-30 mmol/L, we then applied lactate at final concentrations of 0.2, 1, 5, 10, and 25 mmol/L in the experimental groups or 25 mmol/L sodium chloride in the control group. Using high-sensitivity mass spectrometry coupled with data-independent acquisition (DIA) quantification, we quantified 5870, 5744, and 5816 proteins in succinate, fumarate, and lactate mTSA experiments, respectively. By setting stringent cut-off values (i.e., significance of changes in protein thermal stability (p-value)<0.001 and quality of the dose-response curve fitting (square of Pearson's correlation coefficient, R2)>0.95), multiple binding proteins for these organic acid metabolites from background proteins were confidently determined. Several known binding proteins were identified, notably fumarate hydratase (FH) as a binding protein for fumarate, and α-ketoglutarate-dependent dioxygenase (FTO) as a binding protein for both fumarate and succinate. Additionally, the affinity data for the interactions between these metabolites and their binding proteins were obtained, which closely matched those reported in the literature. Interestingly, ornithine aminotransferase (OAT), which is involved in amino acid biosynthesis, and 3-mercaptopyruvate sulfurtransferase (MPST), which acts as an antioxidant in cells, were identified as lactate-binding proteins. Subsequently, an orthogonal assay technique developed in our laboratory, the solvent-induced precipitation (SIP) technique, was used to validate the mTSA results. SIP identified OAT as the top target candidate, validating the mTSA-based finding that OAT is a novel lactate-binding protein. Although MPST was not identified as a lactate-binding protein by SIP, statistical analysis of MPST in the mTSA experiments with 10 or 25 mmol/L lactate revealed that MPST is a lactate-binding protein with a high level of confidence. Peptide-level empirical Bayes t-tests combined with Fisher's exact test also supported the conclusion that MPST is a lactate-binding protein. Lactate is structurally similar to pyruvate, the known binding protein of MPST. Therefore, assuming that lactate could potentially occupy the binding site of pyruvate on MPST. Overall, the novel binding proteins identified for lactate suggest their potential involvement in amino acid synthesis and redox balance regulation.


Assuntos
Ciclo do Ácido Cítrico , Humanos , Células HeLa , Ácido Succínico/metabolismo , Ácido Succínico/química , Fumaratos/metabolismo , Fumaratos/química
7.
Pharmaceutics ; 16(7)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39065612

RESUMO

The development of generic ophthalmic drug products with complex formulations is challenging due to the complexity of the ocular system and a lack of sensitive testing to evaluate the interplay of its physiology with ophthalmic drugs. New methods are needed to facilitate the development of ophthalmic generic drug products. Ocular physiologically based pharmacokinetic (O-PBPK) models can provide insight into drug partitioning in eye tissues that are usually not accessible and/or are challenging to sample in humans. This study aims to demonstrate the utility of an ocular PBPK model to predict human exposure following the administration of ophthalmic suspension. Besifloxacin (Bes) suspension is presented as a case study. The O-PBPK model for Bes ophthalmic suspension (Besivance® 0.6%) accounts for nasolacrimal drainage, suspended particle dissolution in the tears, ocular absorption, and distribution in the rabbit eye. A topical controlled release formulation was used to integrate the effect of Durasite® on Bes ocular retention. The model was subsequently used to predict Bes exposure after its topical administration in humans. Drug-specific parameters were used as validated for rabbits. The physiological parameters were adjusted to match human ocular physiology. Simulated human ocular pharmacokinetic profiles were compared with the observed ocular tissue concentration data to assess the OCAT models' ability to predict human ocular exposure. The O-PBPK model simulations adequately described the observed concentrations in the eye tissues following the topical administration of Bes suspension in rabbits. After adjustment of physiological parameters to represent the human eye, the extrapolation of clinical ocular exposure following a single ocular administration of Bes suspension was successful.

8.
J Am Chem Soc ; 146(29): 20391-20400, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38987861

RESUMO

Inspired by enzymatic catalysis, it is crucial to construct hydrogen-bonding-rich microenvironment around catalytic sites; unfortunately, its precise construction and understanding how the distance between such microenvironment and catalytic sites affects the catalysis remain significantly challenging. In this work, a series of metal-organic framework (MOF)-based single-atom Ru1 catalysts, namely, Ru1/UiO-67-X (X = -H, -m-(NH2)2, -o-(NH2)2), have been synthesized, where the distance between the hydrogen-bonding microenvironment and Ru1 sites is modulated by altering the location of amino groups. The -NH2 group can form hydrogen bonds with H2O, constituting a unique microenvironment that causes an increased water concentration around the Ru1 sites. Remarkably, Ru1/UiO-67-o-(NH2)2 displays a superior photocatalytic hydrogen production rate, ∼4.6 and ∼146.6 times of Ru1/UiO-67-m-(NH2)2 and Ru1/UiO-67, respectively. Both experimental and computational results suggest that the close proximity of amino groups to the Ru1 sites in Ru1/UiO-67-o-(NH2)2 improves charge transfer and H2O dissociation, accounting for the promoted photocatalytic hydrogen production.

9.
Angew Chem Int Ed Engl ; : e202410097, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953455

RESUMO

While supported metal nanoparticles (NPs) have shown significant promise in heterogeneous catalysis, precise control over their interaction with the support, which profoundly impacts their catalytic performance, remains a significant challenge. In this study, Pt NPs are incorporated into thioether-functionalized covalent organic frameworks (denoted COF-Sx), enabling precise control over the size and electronic state of Pt NPs by adjusting the thioether density dangling on the COF pore walls. Notably, the resulting Pt@COF-Sx demonstrate exceptional selectivity (> 99 %) in catalytic hydrogenation of p-chloronitrobenzene to p-chloroaniline, in sharp contrast to the poor selectivity of Pt NPs embedded in thioether-free COFs. Furthermore, the conversion over Pt@COF-Sx exhibits a volcano-type curve as the thioether density increases, due to the corresponding change of accessible Pt sites. This work provides an effective approach to regulating the catalysis of metal NPs via their microenvironment modulation, with the aid of rational design and precise tailoring of support structure.

10.
Gut Microbes ; 16(1): 2380061, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39078050

RESUMO

Cancer immunotherapy has been regarded as a promising strategy for cancer therapy by blocking immune checkpoints and evoking immunity to fight cancer, but its efficacy seems to be heterogeneous among patients. Manipulating the gut microbiota is a potential strategy for enhancing the efficacy of immunotherapy. Here, we report that MS-20, also known as "Symbiota®", a postbiotic that comprises abundant microbial metabolites generated from a soybean-based medium fermented with multiple strains of probiotics and yeast, inhibited colon and lung cancer growth in combination with an anti-programmed cell death 1 (PD1) antibody in xenograft mouse models. Mechanistically, MS-20 remodeled the immunological tumor microenvironment by increasing effector CD8+ T cells and downregulating PD1 expression, which were mediated by the gut microbiota. Fecal microbiota transplantation (FMT) from mice receiving MS-20 treatment to recipient mice increased CD8+ T-cell infiltration into the tumor microenvironment and significantly improved antitumor activity when combined with anti-PD1 therapy. Notably, the abundance of Ruminococcus bromii, which increased following MS-20 treatment, was positively associated with a reduced tumor burden and CD8+ T-cell infiltration in vivo. Furthermore, an ex vivo study revealed that MS-20 could alter the composition of the microbiota in cancer patients, resulting in distinct metabolic pathways associated with favorable responses to immunotherapy. Overall, MS-20 could act as a promising adjuvant agent for enhancing the efficacy of immune checkpoint-mediated antitumor therapy.


Assuntos
Linfócitos T CD8-Positivos , Microbioma Gastrointestinal , Receptor de Morte Celular Programada 1 , Microambiente Tumoral , Animais , Camundongos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Humanos , Microambiente Tumoral/imunologia , Linfócitos T CD8-Positivos/imunologia , Transplante de Microbiota Fecal , Linhagem Celular Tumoral , Probióticos/administração & dosagem , Probióticos/farmacologia , Imunoterapia , Feminino , Neoplasias do Colo/imunologia , Neoplasias do Colo/terapia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/microbiologia , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/terapia , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Chem Sci ; 15(29): 11374-11381, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39055034

RESUMO

Chiral hybrid metal halides (CHMHs) have received a considerable amount of attention in chiroptoelectronics, spintronics, and ferroelectrics due to their superior optoelectrical properties and structural flexibility. Owing to limitations in synthesis, the theoretical prediction of room-temperature stable chiral three-dimensional (3D) CHFClNH3PbI3 has not been successfully prepared, and the optoelectronic properties of such structures cannot be studied. Herein, we have successfully constructed two pairs of chiral 3D lead iodide hybrids (R/S/Rac-3AEP)Pb2I6 (3R/S/Rac, 3AEP = 3-(1-aminoethyl)pyridin-1-ium) and (R/S/Rac-2AEP)Pb2I6 (2R/S/Rac, 2AEP = 2-(1-aminoethyl)pyridin-1-ium) through chiral introduction and ortho substitution strategies, and obtained bulk single crystals of 3R/S/Rac. The 3R/S exhibits optical activity and bulk photovoltaic effect induced by chirality. The 3R crystal device exhibits stable circularly polarized light performance at 565 nm with a maximum anisotropy factor of 0.07, responsivity of 0.25 A W-1, and detectivity of 3.4 × 1012 jones. This study provides new insights into the synthesis of chiral 3D lead halide hybrids and the development of chiral electronic devices.

12.
Mol Carcinog ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39056517

RESUMO

Many studies have shown that tumor cells that survive radiotherapy are more likely to metastasize, but the underlying mechanism remains unclear. Here we aimed to identify epithelial-mesenchymal transition (EMT)-related key genes, which associated with prognosis and radiosensitivity in rectal cancer. First, we obtained differentially expressed genes by analyzing the RNA expression profiles of rectal cancer retrieved from The Cancer Genome Atlas database, EMT-related genes, and radiotherapy-related databases, respectively. Then, Lasso and Cox regression analyses were used to establish an EMT-related prognosis model (EMTPM) based on the identified independent protective factor Fibulin5 (FBLN5) and independent risk gene EHMT2. The high-EMTPM group exhibited significantly poorer prognosis. Then, we evaluated the signature in an external clinical validation cohort. Through in vivo experiments, we further demonstrated that EMTPM effectively distinguishes radioresistant from radiosensitive patients with rectal cancer. Moreover, individuals in the high-EMTPM group showed increased expression of immune checkpoints compared to their counterparts. Finally, pan-cancer analysis of the EMTPM model also indicated its potential for predicting the prognosis of lung squamous cell carcinoma and breast cancer patients undergoing radiotherapy. In summary, we established a novel predictive model for rectal cancer prognosis and radioresistance based on FBLN5 and EHMT2 expressions, and suggested that immune microenvironment may be involved in the process of radioresistance. This predictive model could be used to select management strategies for rectal cancer.

14.
Nat Commun ; 15(1): 5300, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906860

RESUMO

Chemoresistance is a main reason for treatment failure in patients with nasopharyngeal carcinoma, but the exact regulatory mechanism underlying chemoresistance in nasopharyngeal carcinoma remains to be elucidated. Here, we identify PJA1 as a key E3 ubiquitin ligase involved in nasopharyngeal carcinoma chemoresistance that is highly expressed in nasopharyngeal carcinoma patients with nonresponse to docetaxel-cisplatin-5-fluorouracil induction chemotherapy. We find that PJA1 facilitates docetaxel resistance by inhibiting GSDME-mediated pyroptosis in nasopharyngeal carcinoma cells. Mechanistically, PJA1 promotes the degradation of the mitochondrial protein PGAM5 by increasing its K48-linked ubiquitination at K88, which further facilitates DRP1 phosphorylation at S637 and reduced mitochondrial reactive oxygen species production, resulting in suppression of GSDME-mediated pyroptosis and the antitumour immune response. PGAM5 knockdown fully restores the docetaxel sensitization effect of PJA1 knockdown. Moreover, pharmacological targeting of PJA1 with the small molecule inhibitor RTA402 enhances the docetaxel sensitivity of nasopharyngeal carcinoma in vitro and in vivo. Clinically, high PJA1 expression indicates inferior survival and poor clinical efficacy of TPF IC in nasopharyngeal carcinoma patients. Our study emphasizes the essential role of E3 ligases in regulating chemoresistance and provides therapeutic strategies for nasopharyngeal carcinoma based on targeting the ubiquitin-proteasome system.


Assuntos
Docetaxel , Resistencia a Medicamentos Antineoplásicos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Piroptose , Ubiquitina-Proteína Ligases , Ubiquitinação , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Dinaminas/metabolismo , Dinaminas/genética , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Gasderminas , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/genética , Fosforilação/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Piroptose/genética , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Head Neck Pathol ; 18(1): 56, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916683

RESUMO

BACKGROUND: Angiosarcoma is a sarcoma that occurs in a range of tissue types, and only rarely in the salivary glands, showing a predilection for the parotid glands of older patients. Preoperative diagnosis may be challenging, especially on cytology, with significant morphological overlap with high-grade primary salivary gland carcinomas. The molecular alterations of this rare salivary gland neoplasm are also not well-characterized. METHODS AND RESULTS: We present a case of right submandibular gland swelling in a 73-year-old male. On fine needle aspiration, including immunohistochemical stains on cell block, the tumor was initially diagnosed as poorly differentiated carcinoma. Resection of the submandibular gland revealed epithelioid angiosarcoma. We performed molecular work-up of the tumor, utilizing targeted next-generation sequencing, DNA methylation profiling and fluorescence in-situ hybridization. Histopathologic assessment revealed an infiltrative tumor comprising solid sheets of epithelioid cells. The tumor cells formed haphazardly anastomosing vascular channels with intracytoplasmic lumina containing red blood cells. On immunohistochemistry, the tumor cells were positive for CD31, CD34 and ERG. Approximately 40% of the tumor cells showed nuclear expression of GATA3. A pathogenic TP53 R267W mutation was detected on next-generation sequencing. DNA methylation analysis did not cluster the tumor with any known sarcoma type. Copy number analysis showed possible MYC amplification and CDKN2A losses, although only the latter was confirmed on fluorescence in-situ hybridization. CONCLUSION: Epithelioid angiosarcoma is an important differential diagnosis to high-grade salivary gland carcinoma. In particular, GATA3 expression may be encountered in both angiosarcoma and high-grade salivary gland carcinomas and cause diagnostic confusion. Identification of TP53 mutations and CDKN2A losses suggest shared oncogenic pathways with soft tissue angiosarcomas, and should be further investigated.


Assuntos
Hemangiossarcoma , Neoplasias da Glândula Submandibular , Humanos , Masculino , Idoso , Hemangiossarcoma/genética , Hemangiossarcoma/patologia , Hemangiossarcoma/diagnóstico , Neoplasias da Glândula Submandibular/patologia , Neoplasias da Glândula Submandibular/genética , Neoplasias da Glândula Submandibular/diagnóstico , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Citologia
16.
PLoS Pathog ; 20(6): e1012271, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38829910

RESUMO

Proper transcription regulation by key transcription factors, such as IRF3, is critical for anti-viral defense. Dynamics of enhancer activity play important roles in many biological processes, and epigenomic analysis is used to determine the involved enhancers and transcription factors. To determine new transcription factors in anti-DNA-virus response, we have performed H3K27ac ChIP-Seq and identified three transcription factors, NR2F6, MEF2D and MAFF, in promoting HSV-1 replication. NR2F6 promotes HSV-1 replication and gene expression in vitro and in vivo, but not dependent on cGAS/STING pathway. NR2F6 binds to the promoter of MAP3K5 and activates AP-1/c-Jun pathway, which is critical for DNA virus replication. On the other hand, NR2F6 is transcriptionally repressed by c-Jun and forms a negative feedback loop. Meanwhile, cGAS/STING innate immunity signaling represses NR2F6 through STAT3. Taken together, we have identified new transcription factors and revealed the underlying mechanisms involved in the network between DNA viruses and host cells.


Assuntos
Herpesvirus Humano 1 , Imunidade Inata , Humanos , Animais , Herpesvirus Humano 1/imunologia , Camundongos , Replicação Viral , Herpes Simples/imunologia , Herpes Simples/virologia , Herpes Simples/metabolismo , Transdução de Sinais , Células HEK293 , Proteínas Repressoras
17.
Sci Rep ; 14(1): 13587, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867067

RESUMO

Longwave radiation is an important open-air environmental factor that can significantly affect the temperature of concrete, but it has often been ignored in the temperature analysis of open-air concrete structures. In this article, an improved analytical model of concrete temperature was proposed by considering solar radiation, thermal convection, thermal conduction and especially longwave radiation. Temperature monitoring of an open-air concrete block was carried out to verify the proposed model and analyze the heat energy characteristics of open-air concrete. As demonstrated by the open-air experiment, under the influence of longwave radiation, the temperature at the top of the concrete block could decrease rapidly at night and even become lower than the minimum temperature at its bottom. Compared with the analytical model that ignores longwave radiation, the improved model that includes it better matches the measured temperature. According to the energy analysis, although solar radiation controls the transient variation in heat energy, the heat exchange caused by longwave radiation were more than that caused by convection on sunlit surfaces, which indicates the importance of considering longwave radiation.

19.
Emerg Microbes Infect ; 13(1): 2368221, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38932432

RESUMO

A positive-sense (+) single-stranded RNA (ssRNA) virus (e.g. enterovirus A71, EV-A71) depends on viral polypeptide translation for initiation of virus replication after entry. We reported that EV-A71 hijacks Hsp27 to induce hnRNP A1 cytosol redistribution to initiate viral protein translation, but the underlying mechanism is still elusive. Here, we show that phosphorylation-deficient Hsp27-3A (Hsp27S15/78/82A) and Hsp27S78A fail to translocate into the nucleus and induce hnRNP A1 cytosol redistribution, while Hsp27S15A and Hsp27S82A display similar effects to the wild type Hsp27. Furthermore, we demonstrate that the viral 2A protease (2Apro) activity is a key factor in regulating Hsp27/hnRNP A1 relocalization. Hsp27S78A dramatically decreases the IRES activity and viral replication, which are partially reduced by Hsp27S82A. However, Hsp27S15A displays the same activity as the wild-type Hsp27. Peptide S78 potently suppresses EV-A71 protein translation and reproduction through blockage of EV-A71-induced Hsp27 phosphorylation and Hsp27/hnRNP A1 relocalization. A point mutation (S78A) on S78 impairs its inhibitory functions on Hsp27/hnRNP A1 relocalization and viral replication. Taken together, we demonstrate the importance of Ser78 phosphorylation of Hsp27 regulated by virus infection in nuclear translocation, hnRNP A1 cytosol relocation, and viral replication, suggesting a new path (such as peptide S78) for target-based antiviral strategy.


Assuntos
Enterovirus Humano A , Proteínas de Choque Térmico HSP27 , Ribonucleoproteína Nuclear Heterogênea A1 , Replicação Viral , Enterovirus Humano A/efeitos dos fármacos , Enterovirus Humano A/fisiologia , Enterovirus Humano A/genética , Fosforilação , Humanos , Replicação Viral/efeitos dos fármacos , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/genética , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP27/genética , Infecções por Enterovirus/virologia , Infecções por Enterovirus/metabolismo , Antivirais/farmacologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Serina/metabolismo , Células HeLa , Biossíntese de Proteínas , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Proteínas de Choque Térmico
20.
Chem Sci ; 15(24): 9240-9248, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38903231

RESUMO

Stepped spin crossover (SCO) complexes with three or more spin states have promising applications in high-order data storage, multi-switches and multi-sensors. Further synergy with other functionalities, such as luminescence and dielectric properties, will provide a good chance to develop novel multifunctional SCO materials. Here, a bent pillar ligand and luminescent pyrene guest are integrated into a three-dimensional (3D) Hofmann-type metal-organic framework (MOF) [Fe(dpoda){Au(CN)2}2]·pyrene (dpoda = 2,5-di-(pyridyl)-1,3,4-oxadiazole). The magnetic data show an incomplete and two-step SCO behavior with the sequence of 1 ↔ 1/2 ↔ 1/4. The rare bi-directional light-induced excited spin-state trapping (LIESST) effect and light-induced stepped thermal relaxation after LIESST are observed. The pyrene guests interact with dpoda ligands via offset face-to-face π⋯π interactions to form intermolecular exciplex emissions. The competition between thermal quenching and stepped SCO properties results in a complicated and stepped exciplex fluorescence. Moreover, the stepped dielectric property with higher dielectric permittivity at lower temperature may be related to the more frustrated octahedral distortion parameters in the intermediate spin states. Hence, a 3D Hofmann-type MOF with bent pillar ligands and fluorescent guests illustrates an effective way for the development of multifunctional switching materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA