Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(7): 12950-12966, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571102

RESUMO

Based on the optical Magnus effect, the analytical expressions of the electromagnetic field that a spinning dielectric sphere illuminated by polarized plane waves are derived according to the "instantaneous rest-frame" hypothesis and Minkowski's theory. More attention is paid to the near field. The unusual optical phenomena in mesoscale spheres without material and illumination wave asymmetry that are the photonic hook (PH) and whispering gallery mode (WGM)-like resonance caused by rotation are explored. The impact of resonance scattering on PHs is further analyzed under this framework. The influence of non-reciprocal rotating dimensionless parameter γ on PH and resonance is emphasized. The results in this paper have extensive application prospects in mesotronics, particle manipulation, resonator design, mechatronics, and planetary exploration.

2.
Nanomaterials (Basel) ; 13(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570486

RESUMO

This paper pays attention to the broader interest of freezing water droplets in mesotronics, particularly to their use as a new all-optical device platform. Here, we show that a freezing mesoscale water droplet with a low Bond number can behave as fully biocompatible natural microlense to form a photonic hook for application in a tunable temperature-controlled optical switch. We first introduced and demonstrated the basic concepts of an optical switch without changes in the wavelength of illumination of a particle or any moving parts being involved. The principle of the operation of the switch is based on the temperature-induced phase change inside the water droplet's refractive index. The simulation results show that the optical isolation of switched channels for an optical switch with linear dimensions of about 15 λ3 based on a freezing water droplet can reach 10 dB in the process of temperature variation at a fixed wavelength. The use of freezing mesoscale droplets acting as a time-domain photonic hook generator open an intriguing route for optical switching in multifunctional green electronics tools for sensing, integrated optics and optical computers.

3.
Sci Rep ; 13(1): 7732, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173395

RESUMO

Tunable optical devices are of great interest as they offer adjustability to their functions. Temporal optics is a fast-evolving field, which may be useful both for revolutionizing basic research of time-dependent phenomena and for developing full optical devices. With increasing focus on ecological compatibility, bio-friendly alternatives are a key subject matter. Water in its various forms can open up new physical phenomena and unique applications in photonics and modern electronics. Water droplets freezing on cold surfaces are ubiquitous in nature. We propose and demonstrate the effectual generation of time domain self-bending photonic hook (time-PH) beams by using mesoscale freezing water droplet. The PH light bends near the shadow surface of the droplet into large curvature and angles superior to a conventional Airy beam. The key properties of the time-PH (length, curvature, beam waist) can be modified flexibly by changing the positions and curvature of the water-ice interface inside the droplet. Due to the modifying internal structure of freezing water droplets in real time, we showcase the dynamical curvature and trajectory control of the time-PH beams. Compared with the traditional methods, our phase-change- based materials (water and ice) of the mesoscale droplet have advantages of easy fabrication, natural materials, compact structure and low cost. Such PHs may have applications in many fields, including temporal optics and optical switching, microscopy, sensors, materials processing, nonlinear optics, biomedicine, and so on.

4.
Sci Rep ; 13(1): 1073, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658207

RESUMO

Adipose tissue (AT) optical properties for physiological temperatures and in vivo conditions are still insufficiently studied. The AT is composed mainly of packed cells close to spherical shape. It is a possible reason that AT demonstrates a very complicated spatial structure of reflected or transmitted light. It was shown with a cellular tissue phantom, is split into a fan of narrow tracks, originating from the insertion point and representing filament-like light distribution. The development of suitable approaches for describing light propagation in a AT is urgently needed. A mathematical model of the propagation of light through the layers of fat cells is proposed. It has been shown that the sharp local focusing of optical radiation (light localized near the shadow surface of the cells) and its cleavage by coupling whispering gallery modes depends on the optical thickness of the cell layer. The optical coherence tomography numerical simulation and experimental studies results demonstrate the importance of sharp local focusing in AT for understanding its optical properties for physiological conditions and at AT heating.


Assuntos
Adipócitos , Modelos Teóricos , Temperatura , Espalhamento de Radiação , Simulação por Computador
5.
Nanomaterials (Basel) ; 12(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36500817

RESUMO

In this manuscript, we demonstrate the design and experimental proof of an optical cloaking structure that multi-directionally conceals a perfectly electric conductor (PEC) object from an incident plane wave. The dielectric modulation around the highly reflective scattering PEC object is determined by an optimization process for multi-directional cloaking purposes. Additionally, to obtain the multi-directional effect of the cloaking structure, an optimized slice is mirror symmetrized through a radial perimeter. The three-dimensional (3D) finite-difference time-domain method is integrated with genetic optimization to achieve a cloaking design. In order to overcome the technological problems of the corresponding devices in the optical range and to experimentally demonstrate the proposed concept, our experiments were carried out on a scale model in the microwave range. The scaled proof-of-concept of the proposed structure is fabricated by 3D printing of polylactide material, and the brass metallic alloy is used as a perfect electrical conductor for microwave experiments. A good agreement between numerical and experimental results is achieved. The proposed design approach is not restricted only to multi-directional optical cloaking but can also be applied to different cloaking scenarios dealing with electromagnetic waves at nanoscales as well as other types such as acoustic waves. Using nanotechnology, our scale proof-of-concept research will take the next step toward the creation of "optical cloaking" devices.

6.
Nanomaterials (Basel) ; 12(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36234556

RESUMO

The development of all-dielectric structures with high magnetic response at optical frequencies has become a matter of intense study in past years. However, magnetic effects are weak at optical frequencies due to the small value of the magnetic permeability of natural materials. To this end, natural dielectric materials are unemployable for practical "magnetic" applications in optics. We have shown for the first time that it is possible to induce intense magnetic concentric subwavelength "hot circles" in a dielectric mesoscale Janus particle. The basis of the Janus particle is a combination of the effects of a photonic jet, whispering-gallery waves, and the concept of solid immersion. Simulations show an (H/H0)2/(E/E0)2 contrast of more than 10, and maximal magnetic field intensity enhancement is more than 1000 for a wavelength-scaled particle with a refractive index n < 2 and a size parameter in the order of 30. This work may provide a new way to realize precise magnetic devices for integrated photonic circuits and light−matter interaction.

7.
Opt Lett ; 47(7): 1786-1789, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35363735

RESUMO

Optical energy flow inside a dielectric microsphere is usually co-directed with the optical wave vector. At the same time, if the optical field in a microsphere is in resonance with one of the high-quality spatial eigenmodes (whispering-gallery modes- WGMs), a region of reverse energy flow emerges in the shadow hemisphere. This area is of considerable practical interest due to increased optical trapping potential. In this Letter, we consider a perforated microsphere with an air-filled pinhole fabricated along the particle diameter and numerically analyze the peculiarities of WGM excitation in a nanostructured microsphere. A pinhole isolates the energy backflow region of a resonant mode and changes a perforated microsphere into an efficient optical tweezer. For the first time, to the best of our knowledge, a multiple enhancement of the energy backflow intensity in the pinhole at a WGM resonance is revealed and we discuss the ways for its manipulation.

8.
Opt Lett ; 47(4): 794-797, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35167527

RESUMO

In this Letter, we propose a new, to the best of our knowledge, proof-of-concept of optical nano-tweezers based on a pair of dielectric rectangular structures that are capable of generating a finite-volume in-plane optical capsule. Finite-difference time-domain simulations of light spatial distributions and optical trapping forces of a gold nanoparticle immersed in water demonstrate the physical concept of an in-plane subwavelength optical capsule integrated with a microfluidic mesoscale device. It is shown that the refractive index of and the distance between the two dielectric rectangular structures can effectively control the shape and axial position of the optical capsule. Such an in-plane mesoscale structure provides a new path for manipulating absorbing nano-particles or bio-particles in a compact planar architecture, and should thus lead to promising perspectives in lab-on-a-chip domains.


Assuntos
Dispositivos Lab-On-A-Chip , Nanopartículas Metálicas , Ouro , Pinças Ópticas , Refratometria
9.
Nanomaterials (Basel) ; 12(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055268

RESUMO

In this article, we study the optical force exerted on nanorods. In recent years, the capture of micro-nanoparticles has been a frontier topic in optics. A Photonic Jet (PJ) is an emerging subwavelength beam with excellent application prospects. This paper studies the optical force exerted by photonic jets generated by a plane wave illuminating a Generalized Luneburg Lens (GLLs) on nanorods. In the framework of the dipole approximation, the optical force on the nanorods is studied. The electric field of the photonic jet is calculated by the open-source software package DDSCAT developed based on the Discrete Dipole Approximation (DDA). In this paper, the effects of the nanorods' orientation and dielectric constant on the transverse force Fx and longitudinal force Fy are analyzed. Numerical results show that the maximum value of the positive force and the negative force are equal and appear alternately at the position of the photonic jet. Therefore, to capture anisotropic nanoscale-geometries (nanorods), it is necessary to adjust the position of GLLs continuously. It is worth emphasizing that manipulations with nanorods will make it possible to create new materials at the nanoscale.

10.
Sci Rep ; 11(1): 20278, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645897

RESUMO

Photonic hooks have demonstrated to be great candidates for multiple applications ranging from sensing up to optical trapping. In this work, we propose a mechanism to produce such bent structured light beams by exploiting the diffraction and scattering generated by a pair of dielectric rectangles immersed in free space. It is shown how the photonic hooks are generated away from the output surface of the dielectrics by correctly engineering each individual dielectric structure to generate minimum diffraction and maximum scattering along the propagation axis. Different scenarios are studied such as dual-dielectric structures having different lateral dimensions and refractive index as well as cases when both dielectrics have the same lateral dimensions. The results are evaluated both numerically and theoretically demonstrating an excellent agreement between them. These results may open new avenues for optical trapping, focusing and sensing devices via compact and simple dual-dielectric structures.

11.
Opt Lett ; 46(17): 4292-4295, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34469997

RESUMO

In this Letter, we report on a numerical study, fabrication, and experimental observations of photonic nanojet (PNJ) shaping by control of a tangential electric field component. Here the PNJs are generated by a single mesoscale micro-cube that is fabricated from polydimethylsiloxane, deposited on a silicon substrate and placed on thick metal screen at illuminating wavelengths of 405, 532, and 671 nm. It is shown that the length, focal length, and width of the PNJ can be significantly reduced in the presence of the metal masks along the side faces of the micro-cube. Experimental measurements of the PNJ imaging are performed by a scanning optical microscope with laser sources. Our experimental results are in reasonable agreement with simulation predictions of the finite-difference time-domain method. Due to the appearance of the metal masks, the PNJ focal length decreases 1.5 times, the PNJ decay length decreases 1.7 times, and the PNJ resolution increases 1.2 times. Such PNJs possess great potential in complex manipulation, including integrated plasmonic circuits, biosensing, and optical tweezers.

12.
J Biophotonics ; 14(2): e202000342, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33108033

RESUMO

Structured light have made deep impacts on modern biotechnology and clinical practice, with numerous optical systems and lasers currently being used in medicine to treat disease. We demonstrate a new concept of fiber-based optical hook scalpel. The subwavelength photonic hook is obtained in the vicinity of a shaped fiber tip with asymmetric radiation. A 1550 nm continuous-wave source, commonly used for medical imaging, has been required. Photonic hook with a lateral feature size less than the half-wavelength is achieved using a hemispherical shaped fiber tip with metallic mask. This breakthrough is carried out in ambient air by using a 4-µm-diameter fiber with a shaped tip. A good correlation is observed between the computed intensity distribution of photonic hook and the tip sizes. Photonic hook generated with a shaped fiber tip, easier to manipulate, shows far-reaching benefits for potential applications such as ophthalmic laser surgery, super-resolution microscopy, photolithography and material processing.


Assuntos
Terapia a Laser , Lasers , Desenho de Equipamento , Óptica e Fotônica , Fótons
13.
Sci Rep ; 10(1): 20279, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319808

RESUMO

In this study, we report the characteristics of acoustic jets obtained through a mesoscale (radius less than 5 wavelengths) ABS cylinder made with a 3D printer. We have analyzed the influence of cylinder size on the characteristic parameters of an acoustic jet, such as maximum acoustic intensity at focus, Full Width at Half Maximum and length of Acoustic Jet. FWHM below 0.5 wavelength in AJ was experimentally obtained. It has been observed that there are two operating regimes depending on the cylinder radius: the resonant and the non-resonant. In the resonant regime, the excitation of Whispering Gallery Modes results in optimal parameter values of the acoustic jet. However, as it is a resonant regime, any minimal variation in cylinder size, working frequency or refractive index would make resonance disappear. In non-resonant mode, a phononic crystal has been embedded inside the cylinder and the characteristic parameters of the acoustic jet have been studied. These have been observed to improve. Finally, we have shown that curved acoustic jets can be obtained with the ABS cylinder with a phononic crystal embedded inside.

14.
Opt Lett ; 45(17): 4899-4902, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32870885

RESUMO

In this Letter, we report the experimental observations of a tunable curved photonic nanojet (photonic hook) generated by a 5 µm polydimethylsiloxane microcylinder deposited on a silicon substrate and illuminated by 405 nm laser beam. A moveable opaque aluminum-mask is mounted in front of the microcylinder implementing partial illumination and imparting spatial curvature to the photonic nanojet. Experimental results of main parameters (tilt angle, width, and intensity) of emerging photonic hooks exhibit close agreement with numerical predictions of the near-field optical structures. The experimentally measured full widths at half-maximum of photonic hooks are 0.48λ, 0.56λ, and 0.76λ for tilt angles of θ=0∘, 5.7°, and 20.1°, respectively. Photonic hooks possess great potential in complex manipulation such as super-resolution imaging, surface fabrication, and optomechanical manipulation along curved trajectories.

15.
Opt Lett ; 45(14): 3885-3888, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32667310

RESUMO

The physical origin of subwavelength photonic nanojet in specular-reflection mode (s-PNJ) is theoretically considered. This specific type of photonic nanojet (PNJ) emerges upon double focusing of a plane optical wave by a transparent dielectric microparticle located near a flat mirror. For the first time, to the best of our knowledge, we report a unique property of s-PNJ for increasing its focal length and intensity using circular-shaped microparticles with a refractive index ratio exceeding the known limiting value that fundamentally distinguishes s-PNJ from regular PNJ behavior. This may drastically increase the trapping potential of PNJ-based optical tweezers.

16.
Opt Lett ; 45(13): 3418, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630859

RESUMO

This publisher's note contains corrections to Opt. Lett.45, 3244 (2020)OPLEDP0146-959210.1364/OL.391861.

17.
Opt Lett ; 45(12): 3244-3247, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32538953

RESUMO

We propose and study a microstructure based on a dielectric cuboid placed on a thin metal film that can act as an efficient plasmonic lens allowing the focusing of surface plasmons at the subwavelength scale. Using numerical simulations of surface plasmon polariton (SPP) field intensity distributions, we observe high-intensity subwavelength spots and formation of the plasmonic nanojet (PJ) at the telecommunication wavelength of 1530 nm. The fabricated microstructure was characterized using amplitude and phase-resolved scattering-type scanning near-field optical microscopy. We show the first experimental observation of the PJ effect for the SPP waves. Such a novel, to the best of our knowledge, and simple platform can provide new pathways for plasmonics, high-resolution imaging, and biophotonics, as well as optical data storage.

18.
Sci Rep ; 10(1): 8459, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439953

RESUMO

In this work, we experimentally demonstrate that a thin rectangle dielectric-metal structure can have a function of a flat focusing mirror based on photonic jet effect in reflection mode. Using polydimethylsiloxane (PDMS) rectangle with size length of 10 µm and wavelength-scale thickness of 1 µm on the top of a silicon wafer, we have built a flat mirror which focuses an incident beam at the focal length changing from 1.38 µm to 11.67 µm upon tuning the beam incidence angle from 30° to 75°. The focusing properties of such a mirror persist in the wavelength range of 405 nm to 671 nm. Our approach can be extended to realize other optical functionalities by properly controlling rectangle dimensions and materials. This flat focusing mirror is able to guide the incident beam in free space without perceptible diffraction at the distance equal to the photonic jet length and suitable for small-scale photonic circuits.

19.
Ultrasonics ; 106: 106143, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32259742

RESUMO

In this paper, we demonstrate that, contrary to what the Geometrical Optics laws dictate, a flat polymer mesoscale cuboid immersed in water with no need of negative refraction can focus sound. Two main polymers were considered and lens parameters compared: PMMA and Rexolite®. It was concluded that Rexolite® is preferable for acoustic jet formation. The nature of the formation of the foci along the longitudinal axis, that is to say along the wave propagation axis, is numerically and experimentally demonstrated. In addition, the conditions under which a cubic particles lens of this type forms a single localized region with a sub-diffraction transverse size (approximately 0.44 wavelength) are determined. The comparisons of the acoustic wave pressures and the focal distance between the Finite Element Method based numerical results and the experimental results show fair agreement.

20.
Nanoscale Adv ; 2(12): 5912, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36136426

RESUMO

[This corrects the article DOI: 10.1039/D0NA00485E.].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA