Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
2.
bioRxiv ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37905051

RESUMO

Alveolar epithelial regeneration is critical for normal lung function and becomes dysregulated in disease. While alveolar type 2 (AT2) and club cells are known distal lung epithelial progenitors, determining if alveolar epithelial type 1 (AT1) cells also contribute to alveolar regeneration has been hampered by lack of highly specific mouse models labeling AT1 cells. To address this, the Gramd2 CreERT2 transgenic strain was generated and crossed to Rosa mTmG mice. Extensive cellular characterization, including distal lung immunofluorescence and cytospin staining, confirmed that GRAMD2 + AT1 cells are highly enriched for green fluorescent protein (GFP). Interestingly, Gramd2 CreERT2 GFP + cells were able to form organoids in organoid co-culture with Mlg fibroblasts. Temporal scRNAseq revealed that Gramd2 + AT1 cells transition through numerous intermediate lung epithelial cell states including basal, secretory and AT2 cell in organoids while acquiring proliferative capacity. Our results indicate that Gramd2 + AT1 cells are highly plastic suggesting they may contribute to alveolar regeneration.

3.
Elife ; 112022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36214448

RESUMO

Lung development is precisely controlled by underlying gene regulatory networks (GRN). Disruption of genes in the network can interrupt normal development and cause diseases such as bronchopulmonary dysplasia (BPD) - a chronic lung disease in preterm infants with morbid and sometimes lethal consequences characterized by lung immaturity and reduced alveolarization. Here, we generated a transgenic mouse exhibiting a moderate severity BPD phenotype by blocking IGF1 signaling in secondary crest myofibroblasts (SCMF) at the onset of alveologenesis. Using approaches mirroring the construction of the model GRN in sea urchin's development, we constructed the IGF1 signaling network underlying alveologenesis using this mouse model that phenocopies BPD. The constructed GRN, consisting of 43 genes, provides a bird's eye view of how the genes downstream of IGF1 are regulatorily connected. The GRN also reveals a mechanistic interpretation of how the effects of IGF1 signaling are transduced within SCMF from its specification genes to its effector genes and then from SCMF to its neighboring alveolar epithelial cells with WNT5A and FGF10 signaling as the bridge. Consistently, blocking WNT5A signaling in mice phenocopies BPD as inferred by the network. A comparative study on human samples suggests that a GRN of similar components and wiring underlies human BPD. Our network view of alveologenesis is transforming our perspective to understand and treat BPD. This new perspective calls for the construction of the full signaling GRN underlying alveologenesis, upon which targeted therapies for this neonatal chronic lung disease can be viably developed.


Assuntos
Displasia Broncopulmonar , Lactente , Humanos , Camundongos , Recém-Nascido , Animais , Displasia Broncopulmonar/genética , Redes Reguladoras de Genes , Recém-Nascido Prematuro , Organogênese , Modelos Animais de Doenças , Pulmão , Animais Recém-Nascidos , Fator de Crescimento Insulin-Like I/genética
4.
Cell Rep ; 39(1): 110608, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35385750

RESUMO

The lung alveolus is lined with alveolar type 1 (AT1) and type 2 (AT2) epithelial cells. During alveologenesis, increasing demand associated with expanding alveolar numbers is met by proliferating progenitor AT2s (pAT2). Little information exists regarding the identity of this population and their niche microenvironment. We show that during alveologenesis, Hedgehog-responsive PDGFRa(+) progenitors (also known as SCMFs) are a source of secreted trophic molecules that maintain a unique pAT2 population. SCMFs are in turn maintained by TGFß signaling. Compound inactivation of Alk5 TßR2 in SCMFs reduced their numbers and depleted the pAT2 pool without impacting differentiation of daughter cells. In lungs of preterm infants who died with bronchopulmonary dysplasia, PDGFRa is reduced and the number of proliferative AT2s is diminished, indicating that an evolutionarily conserved mechanism governs pAT2 behavior during alveologenesis. SCMFs are a transient cell population, active only during alveologenesis, making them a unique stage-specific niche mesodermal cell type in mammalian organs.


Assuntos
Ouriços , Recém-Nascido Prematuro , Animais , Diferenciação Celular/fisiologia , Células Epiteliais , Fibroblastos , Humanos , Recém-Nascido , Pulmão , Organogênese , Receptores Proteína Tirosina Quinases/metabolismo , Células-Tronco/metabolismo
5.
Stem Cells ; 40(7): 691-703, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35429397

RESUMO

Lung maturation is not limited to proper structural development but also includes differentiation and functionality of various highly specialized alveolar cell types. Alveolar type 1 (AT1s) cells occupy nearly 95% of the alveolar surface and are critical for establishing efficient gas exchange in the mature lung. AT1 cells arise from progenitors specified during the embryonic stage as well as alveolar epithelial progenitors expressing surfactant protein C (Sftpcpos cells) during postnatal and adult stages. Previously, we found that Wnt5a, a non-canonical Wnt ligand, is required for differentiation of AT1 cells during the saccular phase of lung development. To further investigate the role of Wnt5a in AT1 cell differentiation, we generated and characterized a conditional Wnt5a gain-of-function mouse model. Neonatal Wnt5a gain-of-function disrupted alveologenesis through inhibition of cell proliferation. In this setting Wnt5a downregulated ß-catenin-dependent canonical Wnt signaling, repressed AT2 (anti-AT2) and promoted AT1 (pro-AT1) lineage-specific gene expression. In addition, we identified 2 subpopulations of Sftpchigh and Sftpclow alveolar epithelial cells. In Sftpclow cells, Wnt5a exhibits pro-AT1 and anti-AT2 effects, concurrent with inhibition of canonical Wnt signaling. Interestingly, in the Sftpchigh subpopulation, although increasing AT1 lineage-specific gene expression, Wnt5a gain-of-function did not change AT2 gene expression, nor inhibit canonical Wnt signaling. Using primary epithelial cells isolated from human fetal lungs, we demonstrate that this property of Wnt5a is evolutionarily conserved. Wnt5a therefore serves as a selective regulator that ensures proper AT1/AT2 balance in the developing lung.


Assuntos
Células Epiteliais Alveolares , Via de Sinalização Wnt , Células Epiteliais Alveolares/metabolismo , Animais , Diferenciação Celular/genética , Células Epiteliais/metabolismo , Expressão Gênica , Humanos , Recém-Nascido , Camundongos , Via de Sinalização Wnt/genética , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
6.
Stem Cells ; 40(6): 605-617, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35437594

RESUMO

Bronchopulmonary dysplasia (BPD) is a neonatal lung disease developing in premature babies characterized by arrested alveologenesis and associated with decreased Fibroblast growth factor 10 (FGF10) expression. One-week hyperoxia (HYX) exposure of newborn mice leads to a permanent arrest in alveologenesis. To test the role of Fgf10 signaling to promote de novo alveologenesis following hyperoxia, we used transgenic mice allowing inducible expression of Fgf10 and recombinant FGF10 (rFGF10) protein delivered intraperitoneally. We carried out morphometry analysis, and IF on day 45. Alveolospheres assays were performed co-culturing AT2s from normoxia (NOX) with FACS-isolated Sca1Pos resident mesenchymal cells (rMC) from animals exposed to NOX, HYX-PBS, or HYX-FGF10. scRNAseq between rMC-Sca1Pos isolated from NOX and HYX-PBS was also carried out. Transgenic overexpression of Fgf10 and rFGF10 administration rescued the alveologenesis defects following HYX. Alveolosphere assays indicate that the activity of rMC-Sca1Pos is negatively impacted by HYX and partially rescued by rFGF10 treatment. Analysis by IF demonstrates a significant impact of rFGF10 on the activity of resident mesenchymal cells. scRNAseq results identified clusters expressing Fgf10, Fgf7, Pdgfra, and Axin2, which could represent the rMC niche cells for the AT2 stem cells. In conclusion, we demonstrate that rFGF10 administration is able to induce de novo alveologenesis in a BPD mouse model and identified subpopulations of rMC-Sca1Pos niche cells potentially representing its cellular target.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/metabolismo , Fator 10 de Crescimento de Fibroblastos/genética , Fator 10 de Crescimento de Fibroblastos/metabolismo , Humanos , Hiperóxia/metabolismo , Recém-Nascido , Pulmão/metabolismo , Camundongos , Camundongos Transgênicos
7.
Cells ; 11(7)2022 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-35406686

RESUMO

NKX2.1 is a master regulator of lung morphogenesis and cell specification; however, interactions of NKX2.1 with various transcription factors to regulate cell-specific gene expression and cell fate in the distal lung remain incompletely understood. FOXO1 is a key regulator of stem/progenitor cell maintenance/differentiation in several tissues but its role in the regulation of lung alveolar epithelial progenitor homeostasis has not been evaluated. We identified a novel role for FOXO1 in alveolar epithelial cell (AEC) differentiation that results in the removal of NKX2.1 from surfactant gene promoters and the subsequent loss of surfactant expression in alveolar epithelial type I-like (AT1-like) cells. We found that the FOXO1 forkhead domain potentiates a loss of surfactant gene expression through an interaction with the NKX2.1 homeodomain, disrupting NKX2.1 binding to the SFTPC promoter. In addition, blocking PI-3K/AKT signaling reduces phosphorylated FOXO-1 (p-FOXO1), allowing accumulated nuclear FOXO1 to interact with NKX2.1 in differentiating AEC. Inhibiting AEC differentiation in vitro with keratinocyte growth factor (KGF) maintained an AT2 cell phenotype through increased PI3K/AKT-mediated FOXO1 phosphorylation, resulting in higher levels of surfactant expression. Together these results indicate that FOXO1 plays a central role in AEC differentiation by directly binding NKX2.1 and suggests an essential role for FOXO1 in mediating AEC homeostasis.


Assuntos
Células Epiteliais Alveolares , Surfactantes Pulmonares , Células Epiteliais Alveolares/metabolismo , Células Epiteliais/metabolismo , Fator 7 de Crescimento de Fibroblastos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Surfactantes Pulmonares/metabolismo , Tensoativos/metabolismo
8.
Eur Respir J ; 58(5)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33863742

RESUMO

Alveolar type 2 (AT2) cells are heterogeneous cells, with specialised AT2 subpopulations within this lineage exhibiting stem cell properties. However, the existence of quiescent, immature cells within the AT2 lineage that are activated during lung regeneration is unknown.SftpcCreERT2/+;tdTomatoflox/flox mice were used for the labelling of AT2 cells and labelled subpopulations were analysed by flow cytometry, quantitative PCR, assay for transposase-accessible chromatin using sequencing (ATAC-seq), gene arrays, pneumonectomy and culture of precision-cut lung slices. Single-cell RNA-sequencing (scRNA-seq) data from human lungs were analysed.In mice, we detected two distinct AT2 subpopulations, with low tdTomato level (TomLow) and high tdTomato level (TomHigh). TomLow cells express lower levels of the AT2 differentiation markers Fgfr2b and Etv5, while TomHigh, as bona fide mature AT2 cells, show higher levels of Sftpc, Sftpb, Sftpa1, Fgfr2b and Etv5 expression. ATAC-seq analysis indicates that TomLow and TomHigh cells constitute two distinct cell populations, with specific silencing of Sftpc, Rosa26 and cell cycle gene loci in the TomLow population. Upon pneumonectomy, the number of TomLow but not TomHigh cells increases and TomLow cells show upregulated expression of Fgfr2b, Etv5, Sftpc, Ccnd1 and Ccnd2 compared to Sham. TomLow cells overexpress programmed cell death 1 ligand 1 (PD-L1), an immune inhibitory membrane receptor ligand, which is used by flow cytometry to differentially isolate these two subpopulations. In the human lung, data mining of a recent scRNA-seq AT2 data set demonstrates the existence of a PD-L1 Pos population. Therefore, we have identified a novel population of AT2 quiescent, immature progenitor cells in mouse that expand upon pneumonectomy and we have provided evidence for the existence of such cells in human.


Assuntos
Antígeno B7-H1 , Pneumonectomia , Células Epiteliais Alveolares , Animais , Cromatina , Pulmão , Camundongos
9.
Cells ; 9(4)2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252341

RESUMO

BACKGROUND: Bronchopulmonary dysplasia (BPD) is a lung disease of preterm born infants, characterized by alveolar simplification. MicroRNA (miR) are known to be involved in many biological and pathological processes in the lung. Although a changed expression has been described for several miR in BPD, a causal role remains to be established. RESULTS: Our results showed that the expression level of miR-154 increases during lung development and decreases postnatally. Further, hyperoxia treatment maintains high levels of miR-154 in alveolar type 2 cells (AT2). We hypothesized that the decrease in miR-154 expression in AT2 cells is required for normal alveologenesis. To test this hypothesis, we generated a novel transgenic mouse allowing doxycycline-based miR-154 overexpression. Maintenance of miR-154 expression in the postnatal distal lung epithelium under normoxia conditions is sufficient to reproduce the hypoalveologenesis phenotype triggered by hyperoxia. Using a pull-down assay, we identified Caveolin1 as a key downstream target of miR-154. Caveolin1 protein is downregulated in response to overexpression of miR-154. This is associated with increased phosphorylation of Smad3 and Tgf-ß signaling. We found that AT2 cells overexpressing miR-154 display decreased expression of AT2 markers and increased expression of AT1 markers. CONCLUSION: Our results suggest that down-regulation of miR-154 in postnatal lung may function as an important physiological switch that permits the induction of the correct alveolar developmental program, while conversely, failure to down-regulate miR-154 suppresses alveolarization, leading to the common clinically observed phenotype of alveolar simplification.


Assuntos
Displasia Broncopulmonar/metabolismo , MicroRNAs/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/patologia , Proliferação de Células/fisiologia , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/biossíntese , MicroRNAs/genética , Transdução de Sinais
10.
Cells ; 9(2)2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046118

RESUMO

WNT5a is a mainly "non-canonical" WNT ligand whose dysregulation is observed in lung diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and asthma. Germline deletion of Wnt5a disrupts embryonic lung development. However, the temporal-specific function of WNT5a remains unknown. In this study, we generated a conditional loss-of-function mouse model (Wnt5aCAG) and examined the specific role of Wnt5a during the saccular and alveolar phases of lung development. The lack of Wnt5a in the saccular phase blocked distal airway expansion and attenuated differentiation of endothelial and alveolar epithelial type I (AT1) cells and myofibroblasts. Postnatal Wnt5a inactivation disrupted alveologenesis, producing a phenotype resembling human bronchopulmonary dysplasia (BPD). Mutant lungs showed hypoalveolization, but endothelial and epithelial differentiation was unaffected. The major impact of Wnt5a inactivation on alveologenesis was on myofibroblast differentiation and migration, with reduced expression of key regulatory genes. These findings were validated in vitro using isolated lung fibroblasts. Conditional inactivation of the WNT5a receptors Ror1 and Ror2 in alveolar myofibroblasts recapitulated the Wnt5aCAG phenotype, demonstrating that myofibroblast defects are the major cause of arrested alveologenesis in Wnt5aCAG lungs. Finally, we show that WNT5a is reduced in human BPD lung samples, indicating the clinical relevance and potential role for WNT5a in pathogenesis of BPD.


Assuntos
Organogênese , Alvéolos Pulmonares/embriologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Transdução de Sinais , Proteína Wnt-5a/metabolismo , Animais , Animais Recém-Nascidos , Diferenciação Celular , Movimento Celular , Células Cultivadas , Células Endoteliais/citologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Recém-Nascido , Camundongos , Modelos Biológicos , Miofibroblastos/citologia
11.
Am J Respir Crit Care Med ; 201(2): 198-211, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31738079

RESUMO

Rationale: Alveolar epithelial cell (AEC) injury and dysregulated repair are implicated in the pathogenesis of pulmonary fibrosis. Endoplasmic reticulum (ER) stress in AEC has been observed in idiopathic pulmonary fibrosis (IPF), a disease of aging.Objectives: To investigate a causal role for ER stress in the pathogenesis of pulmonary fibrosis (PF) and therapeutic potential of ER stress inhibition in PF.Methods: The role of ER stress in AEC dysfunction and fibrosis was studied in mice with tamoxifen (Tmx)-inducible deletion of ER chaperone Grp78, a key regulator of ER homeostasis, in alveolar type II (AT2) cells, progenitors of distal lung epithelium, and in IPF lung slice cultures.Measurements and Main Results:Grp78 deletion caused weight loss, mortality, lung inflammation, and spatially heterogeneous fibrosis characterized by fibroblastic foci, hyperplastic AT2 cells, and increased susceptibility of old and male mice, all features of IPF. Fibrosis was more persistent in more severely injured Grp78 knockout (KO) mice. Grp78 KO AT2 cells showed evidence of ER stress, apoptosis, senescence, impaired progenitor capacity, and activation of TGF-ß (transforming growth factor-ß)/SMAD signaling. Glucose-regulated protein 78 is reduced in AT2 cells from old mice and patients with IPF, and ER stress inhibitor tauroursodeoxycholic acid ameliorates ER stress and fibrosis in Grp78 KO mouse and IPF lung slice cultures.Conclusions: These results support a causal role for ER stress and resulting epithelial dysfunction in PF and suggest ER stress as a potential mechanism linking aging to IPF. Modulation of ER stress and chaperone function may offer a promising therapeutic approach for pulmonary fibrosis.


Assuntos
Células Epiteliais Alveolares/metabolismo , Estresse do Retículo Endoplasmático/genética , Proteínas de Choque Térmico/genética , Fibrose Pulmonar/genética , Células-Tronco/metabolismo , Fatores Etários , Células Epiteliais Alveolares/patologia , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Antioxidantes/farmacologia , Apoptose/genética , Senescência Celular/genética , Dasatinibe/farmacologia , Chaperona BiP do Retículo Endoplasmático , Técnicas de Inativação de Genes , Proteínas de Choque Térmico/metabolismo , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/efeitos dos fármacos , Glicoproteínas de Membrana/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Inibidores de Proteínas Quinases/farmacologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Quercetina/farmacologia , Quinolinas/farmacologia , Proteínas Smad/metabolismo , Ácido Tauroquenodesoxicólico/farmacologia , Fator de Transcrição CHOP/efeitos dos fármacos , Fator de Transcrição CHOP/metabolismo , Fator de Crescimento Transformador beta/metabolismo
12.
Development ; 146(15)2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31331942

RESUMO

Postnatal alveolar formation is the most important and the least understood phase of lung development. Alveolar pathologies are prominent in neonatal and adult lung diseases. The mechanisms of alveologenesis remain largely unknown. We inactivated Pdgfra postnatally in secondary crest myofibroblasts (SCMF), a subpopulation of lung mesenchymal cells. Lack of Pdgfra arrested alveologenesis akin to bronchopulmonary dysplasia (BPD), a neonatal chronic lung disease. The transcriptome of mutant SCMF revealed 1808 altered genes encoding transcription factors, signaling and extracellular matrix molecules. Elastin mRNA was reduced, and its distribution was abnormal. Absence of Pdgfra disrupted expression of elastogenic genes, including members of the Lox, Fbn and Fbln families. Expression of EGF family members increased when Tgfb1 was repressed in mouse. Similar, but not identical, results were found in human BPD lung samples. In vitro, blocking PDGF signaling decreased elastogenic gene expression associated with increased Egf and decreased Tgfb family mRNAs. The effect was reversible by inhibiting EGF or activating TGFß signaling. These observations demonstrate the previously unappreciated postnatal role of PDGFA/PDGFRα in controlling elastogenic gene expression via a secondary tier of signaling networks composed of EGF and TGFß.


Assuntos
Família de Proteínas EGF/metabolismo , Miofibroblastos/metabolismo , Alvéolos Pulmonares/embriologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Displasia Broncopulmonar/patologia , Proteínas de Ligação ao Cálcio/biossíntese , Diferenciação Celular/fisiologia , Células Cultivadas , Elastina/genética , Proteínas da Matriz Extracelular/biossíntese , Fibrilina-1/biossíntese , Humanos , Camundongos , Camundongos Knockout , Proteína-Lisina 6-Oxidase/biossíntese , RNA Mensageiro/genética , Fator de Crescimento Transformador beta1/biossíntese
13.
J Clin Invest ; 128(3): 970-984, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29400695

RESUMO

Claudins, the integral tight junction (TJ) proteins that regulate paracellular permeability and cell polarity, are frequently dysregulated in cancer; however, their role in neoplastic progression is unclear. Here, we demonstrated that knockout of Cldn18, a claudin family member highly expressed in lung alveolar epithelium, leads to lung enlargement, parenchymal expansion, increased abundance and proliferation of known distal lung progenitors, the alveolar epithelial type II (AT2) cells, activation of Yes-associated protein (YAP), increased organ size, and tumorigenesis in mice. Inhibition of YAP decreased proliferation and colony-forming efficiency (CFE) of Cldn18-/- AT2 cells and prevented increased lung size, while CLDN18 overexpression decreased YAP nuclear localization, cell proliferation, CFE, and YAP transcriptional activity. CLDN18 and YAP interacted and colocalized at cell-cell contacts, while loss of CLDN18 decreased YAP interaction with Hippo kinases p-LATS1/2. Additionally, Cldn18-/- mice had increased propensity to develop lung adenocarcinomas (LuAd) with age, and human LuAd showed stage-dependent reduction of CLDN18.1. These results establish CLDN18 as a regulator of YAP activity that serves to restrict organ size, progenitor cell proliferation, and tumorigenesis, and suggest a mechanism whereby TJ disruption may promote progenitor proliferation to enhance repair following injury.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Claudinas/metabolismo , Pulmão/metabolismo , Fosfoproteínas/metabolismo , Células-Tronco/metabolismo , Adenocarcinoma/metabolismo , Animais , Carcinogênese , Proteínas de Ciclo Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Genótipo , Homeostase , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Neoplasias/metabolismo , Fatores de Transcrição , Proteínas de Sinalização YAP
14.
Front Genet ; 9: 746, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30728831

RESUMO

This study demonstrates that FGF10/FGFR2b signaling on distal epithelial progenitor cells, via ß-catenin/EP300, controls, through a comprehensive set of developmental genes, morphogenesis, and differentiation. Fibroblast growth factor (FGF) 10 signaling through FGF receptor 2b (FGFR2b) is mandatory during early lung development as the deletion of either the ligand or the receptor leads to lung agenesis. However, this drastic phenotype previously hampered characterization of the primary biological activities, immediate downstream targets and mechanisms of action. Through the use of a dominant negative transgenic mouse model (Rosa26rtTA; tet(o)sFgfr2b), we conditionally inhibited FGF10 signaling in vivo in E12.5 embryonic lungs via doxycycline IP injection to pregnant females, and in vitro by culturing control and experimental lungs with doxycycline. The impact on branching morphogenesis 9 h after doxycycline administration was analyzed by morphometry, fluorescence and electron microscopy. Gene arrays at 6 and 9 h following doxycycline administration were carried out. The relationship between FGF10 and ß-catenin signaling was also analyzed through in vitro experiments using IQ1, a pharmacological inhibitor of ß-catenin/EP300 transcriptional activity. Loss of FGF10 signaling did not impact proliferation or survival, but affected both adherens junctions (up-regulation of E-cadherin), and basement membrane organization (increased laminin). Gene arrays identified multiple direct targets of FGF10, including main transcription factors. Immunofluorescence showed a down-regulation of the distal epithelial marker SOX9 and mis-expression distally of the proximal marker SOX2. Staining for the transcriptionally-active form of ß-catenin showed a reduction in experimental vs. control lungs. In vitro experiments using IQ1 phenocopied the impacts of blocking FGF10. This study demonstrates that FGF10/FGFR2b signaling on distal epithelial progenitor cells via ß-catenin/EP300 controls, through a comprehensive set of developmental genes, cell adhesion, and differentiation.

15.
Sci Rep ; 7(1): 3473, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28615712

RESUMO

Epigenetic regulation of differentiation-related genes is poorly understood. We previously reported that transcription factors GATA6 and Sp1 interact with and activate the rat proximal 358-bp promoter/enhancer (p358P/E) of lung alveolar epithelial type I (AT1) cell-specific gene aquaporin-5 (Aqp5). In this study, we found that histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) increased AQP5 expression and Sp1-mediated transcription of p358P/E. HDAC3 overexpression inhibited Sp1-mediated Aqp5 activation, while HDAC3 knockdown augmented AQP5 protein expression. Knockdown of GATA6 or transcriptional co-activator/histone acetyltransferase p300 decreased AQP5 expression, while p300 overexpression enhanced p358P/E activation by GATA6 and Sp1. GATA6 overexpression, SAHA treatment or HDAC3 knockdown increased histone H3 (H3) but not histone H4 (H4) acetylation within the homologous p358P/E region of mouse Aqp5. HDAC3 binds to Sp1 and HDAC3 knockdown increased interaction of GATA6/Sp1, GATA6/p300 and Sp1/p300. These results indicate that GATA6 and HDAC3 control Aqp5 transcription via modulation of H3 acetylation/deacetylation, respectively, through competition for binding to Sp1, and suggest that p300 modulates acetylation and/or interacts with GATA6/Sp1 to regulate Aqp5 transcription. Cooperative interactions among transcription factors and histone modifications regulate Aqp5 expression during alveolar epithelial cell transdifferentiation, suggesting that HDAC inhibitors may enhance repair by promoting acquisition of AT1 cell phenotype.


Assuntos
Células Epiteliais Alveolares/metabolismo , Aquaporina 5/genética , Fator de Transcrição GATA6/metabolismo , Regulação da Expressão Gênica , Histonas/metabolismo , Fator de Transcrição Sp1/metabolismo , Acetilação , Animais , Linhagem Celular , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Humanos , Camundongos , Modelos Biológicos , Fatores de Transcrição de p300-CBP/metabolismo
16.
Stem Cells ; 35(6): 1566-1578, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28370670

RESUMO

ACTA2 expression identifies pulmonary airway and vascular smooth muscle cells (SMCs) as well as alveolar myofibroblasts (MYF). Mesenchymal progenitors expressing fibroblast growth factor 10 (Fgf10), Wilms tumor 1 (Wt1), or glioma-associated oncogene 1 (Gli1) contribute to SMC formation from early stages of lung development. However, their respective contribution and specificity to the SMC and/or alveolar MYF lineages remain controversial. In addition, the contribution of mesenchymal cells undergoing active WNT signaling remains unknown. Using Fgf10CreERT2 , Wt1CreERT2 , Gli1CreERT2 , and Axin2CreERT2 inducible driver lines in combination with a tdTomatoflox reporter line, the respective differentiation of each pool of labeled progenitor cells along the SMC and alveolar MYF lineages was quantified. The results revealed that while FGF10+ and WT1+ cells show a minor contribution to the SMC lineage, GLI1+ and AXIN2+ cells significantly contribute to both the SMC and alveolar MYF lineages, but with limited specificity. Lineage tracing using the Acta2-CreERT2 transgenic line showed that ACTA2+ cells labeled at embryonic day (E)11.5 do not expand significantly to give rise to new SMCs at E18.5. However, ACTA2+ cells labeled at E15.5 give rise to the majority (85%-97%) of the SMCs in the lung at E18.5 as well as alveolar MYF progenitors in the lung parenchyma. Fluorescence-activated cell sorting-based isolation of different subpopulations of ACTA2+ lineage-traced cells followed by gene arrays, identified transcriptomic signatures for alveolar MYF progenitors versus airway and vascular SMCs at E18.5. Our results establish a new transcriptional landscape for further experiments addressing the function of signaling pathways in the formation of different subpopulations of ACTA2+ cells. Stem Cells 2017;35:1566-1578.


Assuntos
Actinas/metabolismo , Pulmão/citologia , Miócitos de Músculo Liso/metabolismo , Animais , Animais Recém-Nascidos , Diferenciação Celular , Linhagem da Célula , Separação Celular , Fator 10 de Crescimento de Fibroblastos/metabolismo , Pulmão/embriologia , Camundongos , Modelos Biológicos , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Alvéolos Pulmonares/citologia , Transdução de Sinais/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
17.
J Pathol ; 241(1): 91-103, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27770432

RESUMO

Inflammation-induced FGF10 protein deficiency is associated with bronchopulmonary dysplasia (BPD), a chronic lung disease of prematurely born infants characterized by arrested alveolar development. So far, experimental evidence for a direct role of FGF10 in lung disease is lacking. Using the hyperoxia-induced neonatal lung injury as a mouse model of BPD, the impact of Fgf10 deficiency in Fgf10+/- versus Fgf10+/+ pups was investigated. In normoxia, no lethality of Fgf10+/+ or Fgf10+/- pups was observed. By contrast, all Fgf10+/- pups died within 8 days of hyperoxic injury, with lethality starting at day 5, whereas Fgf10+/+ pups were all alive. Lungs of pups from the two genotypes were collected on postnatal day 3 following normoxia or hyperoxia exposure for further analysis. In hyperoxia, Fgf10+/- lungs exhibited increased hypoalveolarization. Analysis by FACS of the Fgf10+/- versus control lungs in normoxia revealed a decreased ratio of alveolar epithelial type II (AECII) cells over total Epcam-positive cells. In addition, gene array analysis indicated reduced AECII and increased AECI transcriptome signatures in isolated AECII cells from Fgf10+/- lungs. Such an imbalance in differentiation is also seen in hyperoxia and is associated with reduced mature surfactant protein B and C expression. Attenuation of the activity of Fgfr2b ligands postnatally in the context of hyperoxia also led to increased lethality with decreased surfactant expression. In summary, decreased Fgf10 mRNA levels lead to congenital lung defects, which are compatible with postnatal survival, but which compromise the ability of the lungs to cope with sub-lethal hyperoxic injury. Fgf10 deficiency affects quantitatively and qualitatively the formation of AECII cells. In addition, Fgfr2b ligands are also important for repair after hyperoxia exposure in neonates. Deficient AECII cells could be an additional complication for patients with BPD. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Displasia Broncopulmonar/metabolismo , Fator 10 de Crescimento de Fibroblastos/deficiência , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/patologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fator 10 de Crescimento de Fibroblastos/genética , Fator 10 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica/fisiologia , Hiperóxia/complicações , Hiperóxia/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Surfactantes Pulmonares/metabolismo , RNA Mensageiro/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo
18.
Am J Physiol Lung Cell Mol Physiol ; 312(1): L131-L142, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27864284

RESUMO

Previous studies have demonstrated resistance to naphthalene-induced injury in proximal airways of mice with lung epithelial-specific deletion of the tumor-suppressor gene Pten, attributed to increased proliferation of airway progenitors. We tested effects of Pten loss following bleomycin injury, a model typically used to study distal lung epithelial injury, in conditional PtenSFTPC-cre knockout mice. Pten-deficient airway epithelium exhibited marked hyperplasia, particularly in small bronchioles and at bronchoalveolar duct junctions, with reduced E-cadherin and ß-catenin expression between cells toward the luminal aspect of the hyperplastic epithelium. Bronchiolar epithelial and alveolar epithelial type II (AT2) cells in PtenSFTPC-cre mice showed decreased expression of epithelial markers and increased expression of mesenchymal markers, suggesting at least partial epithelial-mesenchymal transition at baseline. Surprisingly, and in contrast to previous studies, mutant mice were exquisitely sensitive to bleomycin, manifesting rapid weight loss, respiratory distress, increased early mortality (by day 5), and reduced dynamic lung compliance. This was accompanied by sloughing of the hyperplastic airway epithelium with occlusion of small bronchioles by cellular debris, without evidence of increased parenchymal lung injury. Increased airway epithelial cell apoptosis due to loss of antioxidant defenses, reflected by decreased expression of superoxide dismutase 3, in combination with deficient intercellular adhesion, likely predisposed to airway sloughing in knockout mice. These findings demonstrate an important role for Pten in maintenance of airway epithelial phenotype integrity and indicate that responses to Pten deletion in respiratory epithelium following acute lung injury are highly context-dependent and region-specific.


Assuntos
Células Epiteliais/metabolismo , Especificidade de Órgãos , PTEN Fosfo-Hidrolase/metabolismo , Mucosa Respiratória/metabolismo , Animais , Apoptose , Biomarcadores/metabolismo , Bleomicina , Caderinas/metabolismo , Complacência (Medida de Distensibilidade) , Regulação da Expressão Gênica , Hiperplasia , Marcação In Situ das Extremidades Cortadas , Inflamação/patologia , Integrases/metabolismo , Junções Intercelulares/metabolismo , Pulmão/patologia , Pulmão/fisiopatologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Lesão Pulmonar/fisiopatologia , Mesoderma/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , PTEN Fosfo-Hidrolase/deficiência , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coloração e Rotulagem , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
19.
Am J Respir Cell Mol Biol ; 55(3): 395-406, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27064541

RESUMO

Active ion transport by basolateral Na-K-ATPase (Na pump) creates an Na(+) gradient that drives fluid absorption across lung alveolar epithelium. The α1 and ß1 subunits are the most highly expressed Na pump subunits in alveolar epithelial cells (AEC). The specific contribution of the ß1 subunit and the relative contributions of alveolar epithelial type II (AT2) versus type I (AT1) cells to alveolar fluid clearance (AFC) were investigated using two cell type-specific mouse knockout lines in which the ß1 subunit was knocked out in either AT1 cells or both AT1 and AT2 cells. AFC was markedly decreased in both knockout lines, revealing, we believe for the first time, that AT1 cells play a major role in AFC and providing insights into AEC-specific roles in alveolar homeostasis. AEC monolayers derived from knockout mice demonstrated decreased short-circuit current and active Na(+) absorption, consistent with in vivo observations. Neither hyperoxia nor ventilator-induced lung injury increased wet-to-dry lung weight ratios in knockout lungs relative to control lungs. Knockout mice showed increases in Na pump ß3 subunit expression and ß2-adrenergic receptor expression. These results demonstrate a crucial role for the Na pump ß1 subunit in alveolar ion and fluid transport and indicate that both AT1 and AT2 cells make major contributions to these processes and to AFC. Furthermore, they support the feasibility of a general approach to altering alveolar epithelial function in a cell-specific manner that allows direct insights into AT1 versus AT2 cell-specific roles in the lung.


Assuntos
Células Epiteliais Alveolares/metabolismo , Líquidos Corporais/metabolismo , Absorção Fisiológica , Células Epiteliais Alveolares/patologia , Amilorida/farmacologia , Animais , Marcação de Genes , Hiperóxia/complicações , Hiperóxia/patologia , Ativação do Canal Iônico/efeitos dos fármacos , Camundongos Knockout , Tamanho do Órgão , Permeabilidade , Subunidades Proteicas/metabolismo , Edema Pulmonar/metabolismo , Edema Pulmonar/patologia , Edema Pulmonar/fisiopatologia , Receptores Adrenérgicos beta 2/metabolismo , Reprodutibilidade dos Testes , Sódio/metabolismo , Canais de Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Terbutalina/farmacologia , Lesão Pulmonar Induzida por Ventilação Mecânica/complicações , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia
20.
BMC Biol ; 14: 19, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26984772

RESUMO

BACKGROUND: Epithelial-mesenchymal cross talk is centerpiece in the development of many branched organs, including the lungs. The embryonic lung mesoderm provides instructional information not only for lung architectural development, but also for patterning, commitment and differentiation of its many highly specialized cell types. The mesoderm also serves as a reservoir of progenitors for generation of differentiated mesenchymal cell types that include αSMA-expressing fibroblasts, lipofibroblasts, endothelial cells and others. Transforming Growth Factor ß (TGFß) is a key signaling pathway in epithelial-mesenchymal cross talk. Using a cre-loxP approach we have elucidated the role of the TGFß type I receptor tyrosine kinase, ALK5, in epithelial-mesenchymal cross talk during lung morphogenesis. RESULTS: Targeted early inactivation of Alk5 in mesodermal progenitors caused abnormal development and maturation of the lung that included reduced physical size of the sub-mesothelial mesoderm, an established source of specific mesodermal progenitors. Abrogation of mesodermal ALK5-mediated signaling also inhibited differentiation of cell populations in the epithelial and endothelial lineages. Importantly, Alk5 mutant lungs contained a reduced number of αSMA(pos) cells and correspondingly increased lipofibroblasts. Elucidation of the underlying mechanisms revealed that through direct and indirect modulation of target signaling pathways and transcription factors, including PDGFRα, PPARγ, PRRX1, and ZFP423, ALK5-mediated TGFß controls a process that regulates the commitment and differentiation of αSMA(pos) versus lipofibroblast cell populations during lung development. CONCLUSION: ALK5-mediated TGFß signaling controls an early pathway that regulates the commitment and differentiation of αSMA(pos) versus LIF cell lineages during lung development.


Assuntos
Pulmão/citologia , Pulmão/embriologia , Mesoderma/citologia , Mesoderma/embriologia , Miofibroblastos/citologia , Proteínas Serina-Treonina Quinases/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Células-Tronco/citologia , Animais , Diferenciação Celular , Células Cultivadas , Proteínas de Ligação a DNA/genética , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Marcação de Genes , Pulmão/anormalidades , Pulmão/metabolismo , Mesoderma/anormalidades , Mesoderma/metabolismo , Camundongos Endogâmicos C57BL , Músculo Liso/anormalidades , Músculo Liso/citologia , Músculo Liso/embriologia , Músculo Liso/metabolismo , Miofibroblastos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA