Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
2.
Nucleic Acids Res ; 47(19): 10313-10326, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31529052

RESUMO

In Eukaryotes, tRNAs, 5S RNA and U6 RNA are transcribed by RNA polymerase (Pol) III. Human Pol III is composed of 17 subunits. Three specific Pol III subunits form a stable ternary subcomplex (RPC62-RPC39-RPC32α/ß) being involved in pre-initiation complex formation. No paralogues for subunits of this subcomplex subunits have been found in Pols I or II, but hRPC62 was shown to be structurally related to the general Pol II transcription factor hTFIIEα. Here we show that these structural homologies extend to functional similarities. hRPC62 as well as hTFIIEα possess intrinsic ATP-dependent 3'-5' DNA unwinding activity. The ATPase activities of both proteins are stimulated by single-stranded DNA. Moreover, the eWH domain of hTFIIEα can replace the first eWH (eWH1) domain of hRPC62 in ATPase and DNA unwinding assays. Our results identify intrinsic enzymatic activities in hRPC62 and hTFIIEα.


Assuntos
RNA Polimerase III/química , Fatores de Transcrição TFII/genética , Transcrição Gênica , Trifosfato de Adenosina , DNA Helicases/química , DNA Helicases/genética , Humanos , Subunidades Proteicas/química , Subunidades Proteicas/genética , RNA Polimerase III/genética , Fatores de Transcrição TFII/química
3.
Nucleic Acids Res ; 45(17): 10115-10131, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28973460

RESUMO

New transcripts generated by RNA polymerase II (RNAPII) are generally processed in order to form mature mRNAs. Two key processing steps include a precise cleavage within the 3' end of the pre-mRNA, and the subsequent polymerization of adenosines to produce the poly(A) tail. In yeast, these two functions are performed by a large multi-subunit complex that includes the Cleavage Factor IA (CF IA). The four proteins Pcf11, Clp1, Rna14 and Rna15 constitute the yeast CF IA, and of these, Pcf11 is structurally the least characterized. Here, we provide evidence for the binding of two Zn2+ atoms to Pcf11, bound to separate zinc-binding domains located on each side of the Clp1 recognition region. Additional structural characterization of the second zinc-binding domain shows that it forms an unusual zinc finger fold. We further demonstrate that the two domains are not mandatory for CF IA assembly nor RNA polymerase II transcription termination, but are rather involved to different extents in the pre-mRNA 3'-end processing mechanism. Our data thus contribute to a more complete understanding of the architecture and function of Pcf11 and its role within the yeast CF IA complex.


Assuntos
Regiões 3' não Traduzidas/genética , Processamento de Terminações 3' de RNA/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Zinco/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/química , Sequência de Aminoácidos , Sítios de Ligação , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Processamento de Terminações 3' de RNA/genética , RNA Polimerase II/metabolismo , Precursores de RNA/metabolismo , RNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/fisiologia
4.
Biomol NMR Assign ; 9(2): 421-5, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26133941

RESUMO

The yeast protein Pcf11 is a component of the cleavage/polyadenylation factor IA (CF IA) complex involved in the 3' processing of pre-mRNA. Pcf11 interacts with RNA and the C-terminal domain (CTD) of the largest subunit of RNA polymerase II via the CTD-interaction domain (CID), and other peptide regions mediate contacts with CF IA subunits Clp1 and Rna14/Rna15. We have identified a novel domain adjacent to the CID and have determined the backbone and sidechain (1)H, (13)C and (15)N chemical shift assignments for the bacterially produced construct. Despite the reduced sequence complexity due to numerous glutamine and leucine residues, secondary chemical shift analysis indicates that the domain is composed of three well-defined helical regions with relaxation measurements consistent with a folded independent domain. The proximity of this previously uncharacterized domain close to the N-terminal CID prompts speculation for a putative role in modulating CTD and RNA binding, or possible intermolecular contacts within CF IA.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/química , Sequência de Aminoácidos , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espectroscopia de Prótons por Ressonância Magnética
5.
Nucleic Acids Res ; 40(3): 1226-39, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21993300

RESUMO

Polyadenylation is a co-transcriptional process that modifies mRNA 3'-ends in eukaryotes. In yeast, CF IA and CPF constitute the core 3'-end maturation complex. CF IA comprises Rna14p, Rna15p, Pcf11p and Clp1p. CF IA interacts with the C-terminal domain of RNA Pol II largest subunit via Pcf11p which links pre-mRNA 3'-end processing to transcription termination. Here, we analysed the role of Clp1p in 3' processing. Clp1p binds ATP and interacts in CF IA with Pcf11p only. Depletion of Clp1p abolishes transcription termination. Moreover, we found that association of mutations in the ATP-binding domain and in the distant Pcf11p-binding region impair 3'-end processing. Strikingly, these mutations prevent not only Clp1p-Pcf11p interaction but also association of Pcf11p with Rna14p-Rna15p. ChIP experiments showed that Rna15p cross-linking to the 3'-end of a protein-coding gene is perturbed by these mutations whereas Pcf11p is only partially affected. Our study reveals an essential role of Clp1p in CF IA organization. We postulate that Clp1p transmits conformational changes to RNA Pol II through Pcf11p to couple transcription termination and 3'-end processing. These rearrangements likely rely on the correct orientation of ATP within Clp1p.


Assuntos
Processamento de Terminações 3' de RNA , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Alelos , Mutação , Poliadenilação , Subunidades Proteicas/metabolismo , RNA Nucleolar Pequeno/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/fisiologia
6.
Structure ; 19(4): 534-45, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21481776

RESUMO

The removal of the 3' region of pre-mRNA followed by polyadenylation is a key step in mRNA maturation. In the yeast Saccharomyces cerevisiae, one component of the processing machinery is the cleavage/polyadenylation factor IA (CF IA) complex, composed of four proteins (Clp1p, Pcf11p, Rna14p, Rna15p) that recognize RNA sequences adjacent to the cleavage site and recruit additional processing factors. To gain insight into the molecular architecture of CF IA we solved the solution structure of the heterodimer composed of the interacting regions between Rna14p and Rna15p. The C-terminal monkeytail domain from Rna14p and the hinge region from Rna15p display a coupled binding and folding mechanism, where both peptides are initially disordered. Mutants with destabilized monkeytail-hinge interactions prevent association of Rna15p within CF IA. Conservation of interdomain residues reveals that the structural tethering is preserved in the homologous mammalian cleavage stimulation factor (CstF)-77 and CstF-64 proteins of the CstF complex.


Assuntos
Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/química , Fatores de Poliadenilação e Clivagem de mRNA/química , Sequência de Aminoácidos , Sítios de Ligação/genética , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Desdobramento de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Soluções , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
7.
RNA ; 17(3): 412-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21233223

RESUMO

The Cleavage stimulation Factor (CstF) complex is composed of three subunits and is essential for pre-mRNA 3'-end processing. CstF recognizes U and G/U-rich cis-acting RNA sequence elements and helps stabilize the Cleavage and Polyadenylation Specificity Factor (CPSF) at the polyadenylation site as required for productive RNA cleavage. Here, we describe the crystal structure of the N-terminal domain of Drosophila CstF-50 subunit. It forms a compact homodimer that exposes two geometrically opposite, identical, and conserved surfaces that may serve as binding platform. Together with previous data on the structure of CstF-77, homodimerization of CstF-50 N-terminal domain supports the model in which the functional state of CstF is a heterohexamer.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação/química , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Fator Estimulador de Clivagem/química , Fator Estimulador de Clivagem/metabolismo , Drosophila/metabolismo , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Drosophila/crescimento & desenvolvimento , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Poliadenilação , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Precursores de RNA/genética , Precursores de RNA/metabolismo , Homologia de Sequência de Aminoácidos
8.
Nucleic Acids Res ; 36(7): 2418-33, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18304944

RESUMO

In eukaryotic cells, newly synthesized mRNAs acquire a poly(A) tail that plays several fundamental roles in export, translation and mRNA decay. In mammals, PABPN1 controls the processivity of polyadenylation and the length of poly(A) tails during de novo synthesis. This regulation is less well-detailed in yeast. We have recently demonstrated that Nab2p is necessary and sufficient for the regulation of polyadenylation and that the Pab1p/PAN complex may act at a later stage in mRNA metabolism. Here, we show that the presence of both Pab1p and Nab2p in reconstituted pre-mRNA 3'-end processing reactions has no stimulating nor inhibitory effect on poly(A) tail regulation. Importantly, the poly(A)-binding proteins are essential to protect the mature mRNA from being subjected to a second round of processing. We have determined which domains of Nab2p are important to control polyadenylation and found that the RGG-box work in conjunction with the two last essential CCCH-type zinc finger domains. Finally, we have tried to delineate the mechanism by which Nab2p performs its regulation function during polyadenylation: it likely forms a complex with poly(A) tails different from a simple linear deposit of proteins as it has been observed with Pab1p.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Poliadenilação , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Regiões 3' não Traduzidas/química , Citocromos c/genética , Proteínas de Transporte Nucleocitoplasmático/química , Poli A/metabolismo , Polinucleotídeo Adenililtransferase/metabolismo , Estrutura Terciária de Proteína , RNA Fúngico/metabolismo , Proteínas de Ligação a RNA/química , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Dedos de Zinco
9.
Nucleic Acids Res ; 35(13): 4515-22, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17584787

RESUMO

The cleavage stimulation factor (CstF) is essential for the first step of poly(A) tail formation at the 3' ends of mRNAs. This heterotrimeric complex is built around the 77-kDa protein bridging both CstF-64 and CstF-50 subunits. We have solved the crystal structure of the 77-kDa protein from Encephalitozoon cuniculi at a resolution of 2 A. The structure folds around 11 Half-a-TPR repeats defining two domains. The crystal structure reveals a tight homodimer exposing phylogenetically conserved areas for interaction with protein partners. Mapping experiments identify the C-terminal region of Rna14p, the yeast counterpart of CstF-77, as the docking domain for Rna15p, the yeast CstF-64 homologue.


Assuntos
Fator Estimulador de Clivagem/química , Sequência de Aminoácidos , Fator Estimulador de Clivagem/metabolismo , Cristalografia por Raios X , Dimerização , Encephalitozoon cuniculi , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Fatores de Poliadenilação e Clivagem de mRNA/química , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
10.
J Biol Chem ; 280(26): 24532-8, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15894541

RESUMO

Regulation of poly(A) tail length during mRNA 3'-end formation requires a specific poly(A)-binding protein in addition to the cleavage/polyadenylation machinery. The mechanism that controls polyadenylation in mammals is well understood and involves the nuclear poly(A)-binding protein PABPN1. In contrast, poly(A) tail length regulation is poorly understood in yeast. Previous studies have suggested that the major cytoplasmic poly(A)-binding protein Pab1p acts as a length control factor in conjunction with the Pab1p-dependent poly(A) nuclease PAN, to regulate poly(A) tail length in an mRNA specific manner. In contrast, we recently showed that Nab2p regulates polyadenylation during de novo synthesis, and its nuclear location is more consistent with a role in 3'-end processing than that of cytoplasmic Pab1p. Here, we investigate whether PAN activity is required for de novo poly(A) tail synthesis. Components required for mRNA 3'-end formation were purified from wild-type and pan mutant cells. In both situations, 3'-end formation could be reconstituted whether Nab2p or Pab1p was used as the poly(A) tail length control factor. However, polyadenylation was more efficient and physiologically more relevant in the presence of Nab2p as opposed to Pab1p. Moreover, cell immunofluorescence studies confirmed that PAN subunits are localized in the cytoplasm which suggests that cytoplasmic Pab1p and PAN may act at a later stage in mRNA metabolism. Based on these findings, we propose that Nab2p is necessary and sufficient to regulate poly(A) tail length during de novo synthesis in yeast.


Assuntos
Bioquímica/métodos , Poli A/química , Proteínas de Ligação a Poli(A)/química , Proteínas de Ligação a Poli(A)/fisiologia , RNA Fúngico , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiologia , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Relação Dose-Resposta a Droga , Proteínas Fúngicas/química , Immunoblotting , Técnicas In Vitro , Carioferinas/química , Microscopia de Fluorescência , Poliadenilação , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , beta Carioferinas
11.
EMBO J ; 22(11): 2831-40, 2003 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-12773397

RESUMO

Eukaryotic RNA polymerase II transcribes precursors of mRNAs and of non-protein-coding RNAs such as snRNAs and snoRNAs. These RNAs have to be processed at their 3' ends to be functional. mRNAs are matured by cleavage and polyadenylation that require a well-characterized protein complex. Small RNAs are also subject to 3' end cleavage but are not polyadenylated. Here we show that two newly identified proteins, Pti1p and Ref2p, although they were found associated with the pre-mRNA 3' end processing complex, are essential for yeast snoRNA 3' end maturation. We also provide evidence that Pti1p probably acts by uncoupling cleavage and polyadenylation, and functions in coordination with the Nrd1p-dependent pathway for 3' end formation of non-polyadenylated transcripts.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , RNA Nucleolar Pequeno/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Mutação , Proteínas Serina-Treonina Quinases/genética , Processamento Pós-Transcricional do RNA , RNA Fúngico/genética , RNA Mensageiro/genética , RNA Nucleolar Pequeno/genética , Proteínas de Ligação a RNA , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Supressão Genética , Temperatura , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
12.
EMBO J ; 21(7): 1800-10, 2002 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-11927564

RESUMO

Recent studies of mRNA export factors have provided additional evidence for a mechanistic link between mRNA 3'-end formation and nuclear export. Here, we identify Nab2p as a nuclear poly(A)-binding protein required for both poly(A) tail length control and nuclear export of mRNA. Loss of NAB2 expression leads to hyperadenylation and nuclear accumulation of poly(A)(+) RNA but, in contrast to mRNA export mutants, these defects can be uncoupled in a nab2 mutant strain. Previous studies have implicated the cytoplasmic poly(A) tail-binding protein Pab1p in poly(A) tail length control during polyadenylation. Although cells are viable in the absence of NAB2 expression when PAB1 is overexpressed, Pab1p fails to resolve the nab2Delta hyperadenylation defect even when Pab1p is tagged with a nuclear localization sequence and targeted to the nucleus. These results indicate that Nab2p is essential for poly(A) tail length control in vivo, and we demonstrate that Nab2p activates polyadenylation, while inhibiting hyperadenylation, in the absence of Pab1p in vitro. We propose that Nab2p provides an important link between the termination of mRNA polyadenylation and nuclear export.


Assuntos
Núcleo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Transporte Nucleocitoplasmático , RNA Fúngico/fisiologia , RNA Nuclear Heterogêneo/fisiologia , RNA Mensageiro/fisiologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Alelos , Proteínas Fúngicas/genética , Ribonucleoproteínas Nucleares Heterogêneas , Mutagênese , Proteínas de Ligação a Poli(A) , RNA Fúngico/metabolismo , RNA Nuclear Heterogêneo/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA