RESUMO
The goal of this study is to provide a taphonomic analysis of bone fragments found in harpy eagle nests in the Brazilian Amazonia, utilizing the largest sample of prey remains collected to date. Harpy eagle kill samples were collected from nine nests, between June 2016 and December 2020 in Mato Grosso, Brazil. We identified the specimens, calculated the number of identified specimens (NISP) and minimum number of individuals (MNI). These metrics were used to estimate bone survivability and fragmentation. A total of 1661 specimens (NISP) were collected, representing a minimum number of 234 individuals (MNI). We identified at least nine species of primates, which represent 63.8% of the individuals in the kill sample. Harpy eagles preyed mostly on the medium-sized capuchin and bearded saki monkeys (28.2% of the MNI), and two-toed sloths (17.7% of the MNI). The large woolly monkeys also represented a significant portion of the sample (11.5% of the MNI). Three distinct patterns of bone survivability were found, one characterizing two-toed sloths, another characterizing medium-sized monkeys, and a third typical of woolly monkeys. We conclude that harpy eagle predation leaves an identifiable signature on the prey with a bone survivability pattern specific to each taxon. The intertaxon variations observed in the taphonomic signatures of harpy eagle kills should be taken into account when evaluating the potential influence of these raptors as accumulators of bone material in both paleontological and neontological assemblages.
Assuntos
Atelinae , Águias , Bichos-Preguiça , Animais , Paleontologia , Comportamento Predatório , Haplorrinos , CebusRESUMO
Apex predators typically affect the distribution of key soil and vegetation nutrients through the heterogeneous deposition of prey carcasses and excreta, leading to a nutrient concentration in a hotspot. The exact role of central-place foragers, such as tropical raptors, in nutrient deposition and cycling, is not yet known. We investigated whether harpy eagles (Harpia harpyja) in Amazonian Forests-a typically low soil fertility ecosystem-affect soil nutrient profiles and the phytochemistry around their nest-trees through cumulative deposition of prey carcasses and excreta. Nest-trees occurred at densities of 1.5-5.0/100 km2, and each nest received ~ 102.3 kg of undressed carcasses each year. Effects of nests were surprisingly negative over local soil nutrient profiles, with soils underneath nest-trees showing reductions in nutrients compared with controls. Conversely, canopy tree leaves around nests showed significant 99%, 154% and 50% increases in nitrogen, phosphorus and potassium, respectively. Harpy eagles have experienced a 41% decline in their range, and many raptor species are becoming locally extirpated. These are general examples of disruption in biogeochemical cycles and nutrient heterogeneity caused by population declines in a central-place apex predator. This form of carrion deposition is by no means an exception since several large raptors have similar habits.
Assuntos
Ecossistema , Florestas , Árvores , Solo , Nitrogênio , Clima TropicalRESUMO
Sustainable wildlife management is necessary to guarantee the viability of source populations; but it is rarely practiced in the tropics. The yellow anaconda (Eunectes notaeus) has long been harvested for its leather. Since 2002 its harvest has operated under a management program in northeastern Argentina, which relies on adaptive management practices, that limit the minimum body length permitted for harvesting, the number of active hunters and the length of hunting seasons. Here we investigated the effects of yellow anaconda harvest on its demography based on 2002-2019 data and show that exploitation levels are sustainable. The gradual reduction in annual hunting effort, due to a decrease in the number of hunters and hunting season duration, reduced the total number of anacondas harvested. Conversely, captures per unit effort increased across the study period. The body size of anacondas was not influenced by the harvesting, and more females than males were caught. We also found that a decrease in mean temperature positively influenced anaconda harvest and the capture of giant individuals. Because sustainable use is a powerful tool for conservation, and anacondas are widespread in South America, these discoveries are highly applicable to other species and regions.
Assuntos
Boidae , Conservação dos Recursos Naturais , Animais , Feminino , Humanos , Masculino , Animais Selvagens , América do SulRESUMO
Apex predators are threatened globally, and their local extinctions are often driven by failures in sustaining prey acquisition under contexts of severe prey scarcity. The harpy eagle Harpia harpyja is Earth's largest eagle and the apex aerial predator of Amazonian forests, but no previous study has examined the impact of forest loss on their feeding ecology. We monitored 16 active harpy eagle nests embedded within landscapes that had experienced 0 to 85% of forest loss, and identified 306 captured prey items. Harpy eagles could not switch to open-habitat prey in deforested habitats, and retained a diet based on canopy vertebrates even in deforested landscapes. Feeding rates decreased with forest loss, with three fledged individuals dying of starvation in landscapes that succumbed to 50-70% deforestation. Because landscapes deforested by > 70% supported no nests, and eaglets could not be provisioned to independence within landscapes > 50% forest loss, we established a 50% forest cover threshold for the reproductive viability of harpy eagle pairs. Our scaling-up estimate indicates that 35% of the entire 428,800-km2 Amazonian 'Arc of Deforestation' study region cannot support breeding harpy eagle populations. Our results suggest that restoring harpy eagle population viability within highly fragmented forest landscapes critically depends on decisive forest conservation action.
RESUMO
Understanding species-environment relationships is key to defining the spatial structure of species distributions and develop effective conservation plans. However, for many species, this baseline information does not exist. With reliable presence data, spatial models that predict geographic ranges and identify environmental processes regulating distribution are a cost-effective and rapid method to achieve this. Yet these spatial models are lacking for many rare and threatened species, particularly in tropical regions. The harpy eagle (Harpia harpyja) is a Neotropical forest raptor of conservation concern with a continental distribution across lowland tropical forests in Central and South America. Currently, the harpy eagle faces threats from habitat loss and persecution and is categorized as Near-Threatened by the International Union for the Conservation of Nature (IUCN). Within a point process modeling (PPM) framework, we use presence-only occurrences with climatic and topographical predictors to estimate current and past distributions and define environmental requirements using Ecological Niche Factor Analysis. The current PPM prediction had high calibration accuracy (Continuous Boyce Index = 0.838) and was robust to null expectations (pROC ratio = 1.407). Three predictors contributed 96% to the PPM prediction, with Climatic Moisture Index the most important (72.1%), followed by minimum temperature of the warmest month (15.6%) and Terrain Roughness Index (8.3%). Assessing distribution in environmental space confirmed the same predictors explaining distribution, along with precipitation in the wettest month. Our reclassified binary model estimated a current range size 11% smaller than the current IUCN range polygon. Paleoclimatic projections combined with the current model predicted stable climatic refugia in the central Amazon, Guyana, eastern Colombia, and Panama. We propose a data-driven geographic range to complement the current IUCN range estimate and that despite its continental distribution, this tropical forest raptor is highly specialized to specific environmental requirements.
RESUMO
BACKGROUND: Climate plays a key role in the life histories of tropical vertebrates. However, tropical forests are only weakly seasonal compared with temperate and boreal regions. For species with limited ability to control core body temperature, even mild climatic variation can determine major behavioural outcomes, such as foraging and predator avoidance. In tropical forests, sloths are the arboreal vertebrate attaining the greatest biomass density, but their capacity to regulate body temperature is limited, relying on behavioural adaptations to thermoregulate. Sloths are largely or strictly nocturnal, and depend on crypsis to avoid predation. The harpy eagle (Harpia harpyja) is a sloth-specialist and exerts strong top-down control over its prey species. Yet the role of environmental variables on the regulation of predator-prey interactions between sloths and harpy eagles are unknown. The harpy eagle is considered Near Threatened. This motivated a comprehensive eï¬ort to reintroduce this species into parts of Mesoamerica. This eï¬ort incidentally enabled us to understand the prey profile of harpy eagles over multiple seasons. METHODS: Our study was conducted between 2003 and 2009 at Soberanía National Park, Panamá. Telemetered harpy eagles were seen hunting and feeding on individual prey species. For each predation event, field assistants systematically recorded the species killed. We analysed the effects of climatic conditions and vegetation phenology on the prey species profile of harpy eagles using generalised linear mixed models. RESULTS: Here we show that sloth predation by harpy eagles was negatively aï¬ected by nocturnal ambient light (i.e. bright moonshine) and positively aï¬ected by seasonally cool temperatures. We suggest that the first ensured low detectability conditions for sloths foraging at night and the second posed a thermally unsuitable climate that forced sloths to forage under riskier daylight. We showed that even moderate seasonal variation in temperature can influence the relationship between a keystone tropical forest predator and a dominant prey item. Therefore, predator-prey ecology in the tropics can be modulated by subtle changes in environmental conditions. The seasonal eï¬ects shown here suggest important demographic consequences for sloths, which are under top-down regulation from harpy eagle predation, perhaps limiting their geographic distribution at higher latitudes.
RESUMO
The highly interactive nature of predator-prey relationship is essential for ecosystem conservation; predators have been extirpated, however, from entire ecosystems all over the Earth. Reintroductions comprise a management technique to reverse this trend. Species Distribution Models (SDM) are preemptive tools for release-site selection, and can define levels of habitat quality over the species distribution. The Atlantic Forest of South America has lost most of its apex predators, and Harpy Eagles Harpia harpyja-Earth's largest eagle-are now limited to few forest pockets in this domain. Harpy Eagles are supposedly widespread in the Amazon Forest, however, where habitat loss and degradation is advancing at a rapid pace. We aim to describe the suitability of threatened Amazonian landscapes for this eagle. We also aim to assess the suitability of remaining Atlantic Forest sites for Harpy Eagle reintroductions. Here we show that that considerable eagle habitat has already been lost in Amazonia due to the expansion of the "Arc of Deforestation", and that Amazonian forests currently represent 93% of the current distribution of the species. We also show that the Serra do Mar protected areas in southeastern Brazil is the most promising region for Harpy Eagle reintroductions in the Atlantic Forest. Reintroduction and captive breeding programs have been undertaken for Harpy Eagles, building the technical and biological basis for a successful restoration framework. Our distribution range for this species represents a 41% reduction of what is currently proposed by IUCN. Furthermore, habitat loss in Amazonia, combined with industrial logging and hunting suggest that the conservation status of this species should be reassessed. We suggest researchers and conservation practitioners can use this work to help expand efforts to conserve Harpy Eagles and their natural habitats.