Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Peptides ; 175: 171182, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38428743

RESUMO

With the previous knowledge of the cardioprotective effects of the Angiotensin-(1-7) axis, a agonist of Mas receptor has been described, the CGEN-856S. This peptide is more stable than Ang-(1-7), and has a low binding affinity to Angiotensin II receptors. Although the cardioprotective effects of CGEN-856S were previously shown in vivo, the mechanisms behind its effects are still unknown. Here, we employed a combination of molecular biology, confocal microscopy, and genetically modified mouse with Mas deletion to investigate the CGEN-856S protective signaling in cardiomyocytes. In isolated adult ventricular myocytes, CGEN-856S induced an increase in nitric oxide (NO) production which was absent in cells from Mas knockout mice. Using western blot, we observed a significant increase in phosphorylation of AKT after treatment with CGEN-856S. In addition, CGEN-856S prevented the Ang II induced hypertrophy and the nuclear translocation of GRK5 in a culture model of rat neonatal cardiomyocytes. Blockage of Mas receptor and inhibition of the NO synthase abolished the effects of CGEN-856S on Ang II treated cardiomyocytes. In conclusion, we show that CGEN-856S acting via receptor Mas induces NO raise to block Ang II induced cardiomyocyte hypertrophy. These results indicate that CGEN-856S acts very similarly to Ang-(1-7) in cardiac myocytes, highlighting its therapeutic potential for treating cardiovascular diseases.


Assuntos
Miócitos Cardíacos , Óxido Nítrico , Ratos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proto-Oncogene Mas , Receptores Acoplados a Proteínas G/metabolismo , Hipertrofia/metabolismo , Angiotensina II/metabolismo
2.
Cell Rep Methods ; 1(4): 100044, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35475144

RESUMO

Cell membrane deformation is an important feature that occurs during many physiological processes, and its study has been put to good use to investigate cardiomyocyte function. Several methods have been developed to extract information on cardiomyocyte contractility. However, no existing computational framework has provided, in a single platform, a straightforward approach to acquire, process, and quantify this type of cellular dynamics. For this reason, we develop CONTRACTIONWAVE, high-performance software written in Python programming language that allows the user to process large data image files and obtain contractility parameters by analyzing optical flow from images obtained with videomicroscopy. The software was validated by using neonatal, adult-, and human-induced pluripotent stem-cell-derived cardiomyocytes, treated or not with drugs known to affect contractility. Results presented indicate that CONTRACTIONWAVE is an excellent tool for examining changes to cardiac cellular contractility in animal models of disease and for pharmacological and toxicology screening during drug discovery.


Assuntos
Células-Tronco Pluripotentes Induzidas , Fluxo Óptico , Animais , Recém-Nascido , Humanos , Software , Miócitos Cardíacos , Células Cultivadas
3.
Am J Physiol Cell Physiol ; 320(4): C602-C612, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33296286

RESUMO

Cholinesterase inhibitors are used in postmenopausal women for the treatment of neurodegenerative diseases. Despite their widespread use in the clinical practice, little is known about the impact of augmented cholinergic signaling on cardiac function under reduced estrogen conditions. To address this gap, we subjected a genetically engineered murine model of systemic vesicular acetylcholine transporter overexpression (Chat-ChR2) to ovariectomy and evaluated cardiac parameters. Left-ventricular function was similar between Chat-ChR2 and wild-type (WT) mice. Following ovariectomy, WT mice showed signs of cardiac hypertrophy. Conversely, ovariectomized (OVX) Chat-ChR2 mice evolved to cardiac dilation and failure. Transcript levels for cardiac stress markers atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) were similarly upregulated in WT/OVX and Chat-ChR2/OVX mice. 17ß-Estradiol (E2) treatment normalized cardiac parameters in Chat-ChR2/OVX to the Chat-ChR2/SHAM levels, providing a link between E2 status and the aggravated cardiac response in this model. To investigate the cellular basis underlying the cardiac alterations, ventricular myocytes were isolated and their cellular area and contractility were assessed. Myocytes from WT/OVX mice were wider than WT/SHAM, an indicative of concentric hypertrophy, but their fractional shortening was similar. Conversely, Chat-ChR2/OVX myocytes were elongated and presented contractile dysfunction. E2 treatment again prevented the structural and functional changes in Chat-ChR2/OVX myocytes. We conclude that hypercholinergic mice under reduced estrogen conditions do not develop concentric hypertrophy, a critical compensatory adaptation, evolving toward cardiac dilation and failure. This study emphasizes the importance of understanding the consequences of cholinesterase inhibition, used clinically to treat dementia, for cardiac function in postmenopausal women.


Assuntos
Acetilcolina/metabolismo , Fibras Colinérgicas/metabolismo , Estrogênios/deficiência , Coração/inervação , Hipertrofia Ventricular Esquerda/metabolismo , Miócitos Cardíacos/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Animais , Estradiol/farmacologia , Terapia de Reposição de Estrogênios , Feminino , Frequência Cardíaca , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Ovariectomia , Transdução de Sinais , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Proteínas Vesiculares de Transporte de Acetilcolina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA