Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Evol Biol ; 14: 75, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24885927

RESUMO

BACKGROUND: The forelimb-specific gene tbx5 is highly conserved and essential for the development of forelimbs in zebrafish, mice, and humans. Amongst birds, a single order, Dinornithiformes, comprising the extinct wingless moa of New Zealand, are unique in having no skeletal evidence of forelimb-like structures. RESULTS: To determine the sequence of tbx5 in moa, we used a range of PCR-based techniques on ancient DNA to retrieve all nine tbx5 exons and splice sites from the giant moa, Dinornis. Moa Tbx5 is identical to chicken Tbx5 in being able to activate the downstream promotors of fgf10 and ANF. In addition we show that missexpression of moa tbx5 in the hindlimb of chicken embryos results in the formation of forelimb features, suggesting that Tbx5 was fully functional in wingless moa. An alternatively spliced exon 1 for tbx5 that is expressed specifically in the forelimb region was shown to be almost identical between moa and ostrich, suggesting that, as well as being fully functional, tbx5 is likely to have been expressed normally in moa since divergence from their flighted ancestors, approximately 60 mya. CONCLUSIONS: The results suggests that, as in mice, moa tbx5 is necessary for the induction of forelimbs, but is not sufficient for their outgrowth. Moa Tbx5 may have played an important role in the development of moa's remnant forelimb girdle, and may be required for the formation of this structure. Our results further show that genetic changes affecting genes other than tbx5 must be responsible for the complete loss of forelimbs in moa.


Assuntos
Proteínas Aviárias/genética , Evolução Biológica , Voo Animal , Membro Anterior/embriologia , Paleógnatas/genética , Proteínas com Domínio T/genética , Animais , Fator Natriurético Atrial/genética , Proteínas Aviárias/metabolismo , Galinhas , Fator 10 de Crescimento de Fibroblastos/genética , Humanos , Camundongos , Nova Zelândia , Paleógnatas/fisiologia , Struthioniformes/embriologia , Proteínas com Domínio T/metabolismo
2.
PLoS One ; 7(10): e46989, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071691

RESUMO

BACKGROUND: Type II activation of macrophages is known to support Th2 responses development; however, the role of Th2 cytokines (esp. IL-4) on type II activation is unknown. To assess whether the central Th2 cytokine IL-4 can alter type II activation of macrophages, we compared the ability of bone marrow-derived macrophages from wild type (WT) and IL-4Rα-deficient mice to be classically or type II-activated in vitro. RESULTS: We found that although both WT and IL-4Rα-deficient macrophages could be classically activated by LPS or type II activated by immune complexes plus LPS, IL-4Rα-deficient macrophages consistently produced much higher levels of IL-12p40 and IL-10 than WT macrophages. Additionally, we discovered that type II macrophages from both strains were capable of producing IL-4; however, this IL-4 was not responsible for the reduced IL-12p40 and IL-10 levels produced by WT mice. Instead, we found that derivation culture conditions (GM-CSF plus IL-3 versus M-CSF) could explain the different responses of BALB/c and IL-4Rα-/- macrophages, and these cytokines shaped the ensuing macrophage such that GM-CSF plus IL-3 promoted more IL-12 and IL-4 while M-CSF led to higher IL-10 production. Finally, we found that enhanced IL-4 production is characteristic of the type II activation state as other type II-activating products showed similar results. CONCLUSIONS: Taken together, these results implicate type II activated macrophages as an important innate immune source of IL-4 that may play an important role in shaping adaptive immune responses.


Assuntos
Interleucina-4/metabolismo , Ativação de Macrófagos , Macrófagos/fisiologia , Receptores de Superfície Celular/genética , Animais , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Interleucina-10/metabolismo , Interleucina-3/metabolismo , Interleucina-3/farmacologia , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Mutantes , Receptores de Superfície Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA