Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Epilepsia ; 62(8): 1807-1819, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34268728

RESUMO

OBJECTIVE: Tracking seizures is crucial for epilepsy monitoring and treatment evaluation. Current epilepsy care relies on caretaker seizure diaries, but clinical seizure monitoring may miss seizures. Wearable devices may be better tolerated and more suitable for long-term ambulatory monitoring. This study evaluates the seizure detection performance of custom-developed machine learning (ML) algorithms across a broad spectrum of epileptic seizures utilizing wrist- and ankle-worn multisignal biosensors. METHODS: We enrolled patients admitted to the epilepsy monitoring unit and asked them to wear a wearable sensor on either their wrists or ankles. The sensor recorded body temperature, electrodermal activity, accelerometry (ACC), and photoplethysmography, which provides blood volume pulse (BVP). We used electroencephalographic seizure onset and offset as determined by a board-certified epileptologist as a standard comparison. We trained and validated ML for two different algorithms: Algorithm 1, ML methods for developing seizure type-specific detection models for nine individual seizure types; and Algorithm 2, ML methods for building general seizure type-agnostic detection, lumping together all seizure types. RESULTS: We included 94 patients (57.4% female, median age = 9.9 years) and 548 epileptic seizures (11 066 h of sensor data) for a total of 930 seizures and nine seizure types. Algorithm 1 detected eight of nine seizure types better than chance (area under the receiver operating characteristic curve [AUC-ROC] = .648-.976). Algorithm 2 detected all nine seizure types better than chance (AUC-ROC = .642-.995); a fusion of ACC and BVP modalities achieved the best AUC-ROC (.752) when combining all seizure types together. SIGNIFICANCE: Automatic seizure detection using ML from multimodal wearable sensor data is feasible across a broad spectrum of epileptic seizures. Preliminary results show better than chance seizure detection. The next steps include validation of our results in larger datasets, evaluation of the detection utility tool for additional clinical seizure types, and integration of additional clinical information.


Assuntos
Epilepsia , Convulsões , Dispositivos Eletrônicos Vestíveis , Benchmarking , Criança , Eletroencefalografia , Epilepsia/diagnóstico , Feminino , Humanos , Aprendizado de Máquina , Masculino , Convulsões/diagnóstico
2.
EBioMedicine ; 66: 103275, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33745882

RESUMO

BACKGROUND: Assistive automatic seizure detection can empower human annotators to shorten patient monitoring data review times. We present a proof-of-concept for a seizure detection system that is sensitive, automated, patient-specific, and tunable to maximise sensitivity while minimizing human annotation times. The system uses custom data preparation methods, deep learning analytics and electroencephalography (EEG) data. METHODS: Scalp EEG data of 365 patients containing 171,745 s ictal and 2,185,864 s interictal samples obtained from clinical monitoring systems were analysed as part of a crowdsourced artificial intelligence (AI) challenge. Participants were tasked to develop an ictal/interictal classifier with high sensitivity and low false alarm rates. We built a challenge platform that prevented participants from downloading or directly accessing the data while allowing crowdsourced model development. FINDINGS: The automatic detection system achieved tunable sensitivities between 75.00% and 91.60% allowing a reduction in the amount of raw EEG data to be reviewed by a human annotator by factors between 142x, and 22x respectively. The algorithm enables instantaneous reviewer-managed optimization of the balance between sensitivity and the amount of raw EEG data to be reviewed. INTERPRETATION: This study demonstrates the utility of deep learning for patient-specific seizure detection in EEG data. Furthermore, deep learning in combination with a human reviewer can provide the basis for an assistive data labelling system lowering the time of manual review while maintaining human expert annotation performance. FUNDING: IBM employed all IBM Research authors. Temple University employed all Temple University authors. The Icahn School of Medicine at Mount Sinai employed Eren Ahsen. The corresponding authors Stefan Harrer and Gustavo Stolovitzky declare that they had full access to all the data in the study and that they had final responsibility for the decision to submit for publication.


Assuntos
Inteligência Artificial , Encéfalo/fisiopatologia , Eletroencefalografia , Neurologistas , Convulsões/diagnóstico , Algoritmos , Análise de Dados , Aprendizado Profundo , Eletroencefalografia/métodos , Eletroencefalografia/normas , Epilepsia/diagnóstico , Humanos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA