Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Sci Signal ; 17(822): eabq1007, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320000

RESUMO

Mitochondrial dynamics and trafficking are essential to provide the energy required for neurotransmission and neural activity. We investigated how G protein-coupled receptors (GPCRs) and G proteins control mitochondrial dynamics and trafficking. The activation of Gαq inhibited mitochondrial trafficking in neurons through a mechanism that was independent of the canonical downstream PLCß pathway. Mitoproteome analysis revealed that Gαq interacted with the Eutherian-specific mitochondrial protein armadillo repeat-containing X-linked protein 3 (Alex3) and the Miro1/Trak2 complex, which acts as an adaptor for motor proteins involved in mitochondrial trafficking along dendrites and axons. By generating a CNS-specific Alex3 knockout mouse line, we demonstrated that Alex3 was required for the effects of Gαq on mitochondrial trafficking and dendritic growth in neurons. Alex3-deficient mice had altered amounts of ER stress response proteins, increased neuronal death, motor neuron loss, and severe motor deficits. These data revealed a mammalian-specific Alex3/Gαq mitochondrial complex, which enables control of mitochondrial trafficking and neuronal death by GPCRs.


Assuntos
Axônios , Neurônios , Animais , Camundongos , Axônios/metabolismo , Mamíferos/metabolismo , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo
2.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255908

RESUMO

Mitochondria are double-membrane organelles within eukaryotic cells that act as cellular power houses owing to their ability to efficiently generate the ATP required to sustain normal cell function. Also, they represent a "hub" for the regulation of a plethora of processes, including cellular homeostasis, metabolism, the defense against oxidative stress, and cell death. Mitochondrial dysfunctions are associated with a wide range of human diseases with complex pathologies, including metabolic diseases, neurodegenerative disorders, and cancer. Therefore, regulating dysfunctional mitochondria represents a pivotal therapeutic opportunity in biomedicine. Marine ecosystems are biologically very diversified and harbor a broad range of organisms, providing both novel bioactive substances and molecules with meaningful biomedical and pharmacological applications. Recently, many mitochondria-targeting marine-derived molecules have been described to regulate mitochondrial biology, thus exerting therapeutic effects by inhibiting mitochondrial abnormalities, both in vitro and in vivo, through different mechanisms of action. Here, we review different strategies that are derived from marine organisms which modulate specific mitochondrial processes or mitochondrial molecular pathways and ultimately aim to find key molecules to treat a wide range of human diseases characterized by impaired mitochondrial function.


Assuntos
Ecossistema , Mitocôndrias , Humanos , Morte Celular , Células Eucarióticas , Estresse Oxidativo
3.
Redox Biol ; 66: 102862, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37660443

RESUMO

The retina is particularly vulnerable to genetic and environmental alterations that generate oxidative stress and cause cellular damage in photoreceptors and other retinal neurons, eventually leading to cell death. CERKL (CERamide Kinase-Like) mutations cause Retinitis Pigmentosa and Cone-Rod Dystrophy in humans, two disorders characterized by photoreceptor degeneration and progressive vision loss. CERKL is a resilience gene against oxidative stress, and its overexpression protects cells from oxidative stress-induced apoptosis. Besides, CERKL contributes to stress granule-formation and regulates mitochondrial dynamics in the retina. Using the CerklKD/KO albino mouse model, which recapitulates the human disease, we aimed to study the impact of Cerkl knockdown on stress response and activation of photoreceptor death mechanisms upon light/oxidative stress. After acute light injury, we assessed immediate or late retinal stress response, by combining both omic and non-omic approaches. Our results show that Cerkl knockdown increases ROS levels and causes a basal exacerbated stress state in the retina, through alterations in glutathione metabolism and stress granule production, overall compromising an adequate response to additional oxidative damage. As a consequence, several cell death mechanisms are triggered in CerklKD/KO retinas after acute light stress. Our studies indicate that Cerkl gene is a pivotal player in regulating light-challenged retinal homeostasis and shed light on how mutations in CERKL lead to blindness by dysregulation of the basal oxidative stress response in the retina.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool) , Degeneração Retiniana , Retinose Pigmentar , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Homeostase , Estresse Oxidativo , Retina , Degeneração Retiniana/genética , Retinose Pigmentar/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética
4.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232896

RESUMO

Mutations in the Ceramide Kinase-like (CERKL) gene cause retinal dystrophies, characterized by progressive degeneration of retinal neurons, which eventually lead to vision loss. Among other functions, CERKL is involved in the regulation of autophagy, mitochondrial dynamics, and metabolism in the retina. However, CERKL is nearly ubiquitously expressed, and it has been recently described to play a protective role against brain injury. Here we show that Cerkl is expressed in the hippocampus, and we use mouse hippocampal neurons to explore the impact of either overexpression or depletion of CERKL on mitochondrial trafficking and dynamics along axons. We describe that a pool of CERKL localizes at mitochondria in hippocampal axons. Importantly, the depletion of CERKL in the CerklKD/KO mouse model is associated with changes in the expression of fusion/fission molecular regulators, induces mitochondrial fragmentation, and impairs axonal mitochondrial trafficking. Our findings highlight the role of CERKL, a retinal dystrophy gene, in the regulation of mitochondrial health and homeostasis in central nervous system anatomic structures other than the retina.


Assuntos
Neurônios , Fosfotransferases (Aceptor do Grupo Álcool) , Retina , Distrofias Retinianas , Animais , Hipocampo/citologia , Camundongos , Dinâmica Mitocondrial , Neurônios/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Retina/metabolismo
5.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077078

RESUMO

Activation of NF-κB transcription factor is strictly regulated to accurately direct cellular processes including inflammation, immunity, and cell survival. In the retina, the modulation of the NF-κB pathway is essential to prevent excessive inflammatory responses, which plays a pivotal role in many retinal neurodegenerative diseases, such as age-related macular degeneration (AMD), diabetic retinopathy (DR), and inherited retinal dystrophies (IRDs). A critical cytokine mediating inflammatory responses in retinal cells is tumor necrosis factor-alpha (TNFα), leading to the activation of several transductional pathways, including NF-κB. However, the multiple factors orchestrating the appropriate regulation of NF-κB in retinal cells still remain unclear. The present study explores how the ubiquitin-specific protease 48 (USP48) downregulation impacts the stability and transcriptional activity of NF-κB/p65 in retinal pigment epithelium (RPE), at both basal conditions and following TNFα stimulation. We described that USP48 downregulation stabilizes p65. Notably, the accumulation of p65 is mainly detectable in the nuclear compartment and it is accompanied by an increased NF-κB transcriptional activity. These results delineate a novel role of USP48 in negatively regulating NF-κB in retinal cells, providing new opportunities for therapeutic intervention in retinal pathologies.


Assuntos
NF-kappa B , Epitélio Pigmentado da Retina , NF-kappa B/metabolismo , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo
6.
Int J Obes (Lond) ; 46(9): 1652-1661, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35705702

RESUMO

OBJECTIVES: To determine the role of armadillo repeat-containing X-linked protein 3 (ARMCX3) in the thermogenic plasticity of adipose tissue. METHODS: Adipose tissues were characterized in Armcx3-KO male mice. Armcx3 gene expression was analyzed in adipose tissue from mice exposed to thermogenic inducers (cold, ß3-adenergic stimulus) and in differentiating brown and beige cells in culture. Analyses encompassed circulating metabolite and hormonal profiling, tissue characterization, histology, gene expression patterns, and immunoblot assays. Armcx3 gene expression was assessed in subcutaneous adipose tissue from lean individuals and individuals with obesity and was correlated with expression of marker genes of adipose browning. The effects of adenoviral-mediated overexpression of ARMCX3 on differentiating brown adipocyte gene expression and respiratory activity were determined. RESULTS: Male mice lacking ARMCX3 showed significant induction of white adipose tissue browning. In humans, ARMCX3 expression in subcutaneous adipose tissue was inversely correlated with the expression of marker genes of thermogenic activity, including CIDEA, mitochondrial transcripts, and creatine kinase-B. Armcx3 expression in adipose tissues was repressed by thermogenic activation (cold or ß3-adrenergic stimulation) and was upregulated by obesity in mice and humans. Experimentally-induced increases in Armcx3 caused down-regulation of thermogenesis-related genes and reduced mitochondrial oxidative activity of adipocytes in culture, whereas siRNA-mediated Armcx3 knocking-down enhanced expression of thermogenesis-related genes. CONCLUSION: ARMCX3 is a novel player in the control of thermogenic adipose tissue plasticity that acts to repress acquisition of the browning phenotype and shows a direct association with indicators of obesity in mice and humans.


Assuntos
Tecido Adiposo Marrom , Proteínas do Domínio Armadillo , Proteínas Mitocondriais , Animais , Masculino , Camundongos , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Termogênese , Proteínas do Domínio Armadillo/metabolismo , Proteínas Mitocondriais/metabolismo
7.
Antioxidants (Basel) ; 10(12)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34943121

RESUMO

The precise function of CERKL, a Retinitis Pigmentosa (RP) causative gene, is not yet fully understood. There is evidence that CERKL is involved in the regulation of autophagy, stress granules, and mitochondrial metabolism, and it is considered a gene that is resilient against oxidative stress in the retina. Mutations in most RP genes affect photoreceptors, but retinal pigment epithelium (RPE) cells may be also altered. Here, we aimed to analyze the effect of CERKL overexpression and depletion in vivo and in vitro, focusing on the state of the mitochondrial network under oxidative stress conditions. Our work indicates that the depletion of CERKL increases the vulnerability of RPE mitochondria, which show a shorter size and altered shape, particularly upon sodium arsenite treatment. CERKL-depleted cells have dysfunctional mitochondrial respiration particularly upon oxidative stress conditions. The overexpression of two human CERKL isoforms (558 aa and 419 aa), which display different protein domains, shows that a pool of CERKL localizes at mitochondria in RPE cells and that CERKL protects the mitochondrial network-both in size and shape-against oxidative stress. Our results support CERKL being a resilient gene that regulates the mitochondrial network in RPE as in retinal neurons and suggest that RPE cell alteration contributes to particular phenotypic traits in patients carrying CERKL mutations.

8.
Neurobiol Dis ; 156: 105405, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34048907

RESUMO

The retina is a highly active metabolic organ that displays a particular vulnerability to genetic and environmental factors causing stress and homeostatic imbalance. Mitochondria constitute a bioenergetic hub that coordinates stress response and cellular homeostasis, therefore structural and functional regulation of the mitochondrial dynamic network is essential for the mammalian retina. CERKL (ceramide kinase like) is a retinal degeneration gene whose mutations cause Retinitis Pigmentosa in humans, a visual disorder characterized by photoreceptors neurodegeneration and progressive vision loss. CERKL produces multiple isoforms with a dynamic subcellular localization. Here we show that a pool of CERKL isoforms localizes at mitochondria in mouse retinal ganglion cells. The depletion of CERKL levels in CerklKD/KO(knockdown/knockout) mouse retinas cause increase of autophagy, mitochondrial fragmentation, alteration of mitochondrial distribution, and dysfunction of mitochondrial-dependent bioenergetics and metabolism. Our results support CERKL as a regulator of autophagy and mitochondrial biology in the mammalian retina.


Assuntos
Mitocôndrias/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Retina/metabolismo , Distrofias Retinianas/metabolismo , Células Ganglionares da Retina/metabolismo , Animais , Autofagia/fisiologia , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Retina/ultraestrutura , Distrofias Retinianas/genética , Distrofias Retinianas/patologia , Células Ganglionares da Retina/ultraestrutura , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia
9.
Cancers (Basel) ; 13(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807672

RESUMO

ARMCX3 is encoded by a member of the Armcx gene family and is known to be involved in nervous system development and function. We found that ARMCX3 is markedly upregulated in mouse liver in response to high lipid availability, and that hepatic ARMCX3 is upregulated in patients with NAFLD and hepatocellular carcinoma (HCC). Mice were subjected to ARMCX3 invalidation (inducible ARMCX3 knockout) and then exposed to a high-fat diet and diethylnitrosamine-induced hepatocarcinogenesis. The effects of experimental ARMCX3 knockdown or overexpression in HCC cell lines were also analyzed. ARMCX3 invalidation protected mice against high-fat-diet-induced NAFLD and chemically induced hepatocarcinogenesis. ARMCX3 invalidation promoted apoptotic cell death and macrophage infiltration in livers of diethylnitrosamine-treated mice maintained on a high-fat diet. ARMCX3 downregulation reduced the viability, clonality and migration of HCC cell lines, whereas ARMCX3 overexpression caused the reciprocal effects. SOX9 was found to mediate the effects of ARMCX3 in hepatic cells, with the SOX9 interaction required for the effects of ARMCX3 on hepatic cell proliferation. In conclusion, ARMCX3 is identified as a novel molecular actor in liver physiopathology and carcinogenesis. ARMCX3 downregulation appears to protect against hepatocarcinogenesis, especially under conditions of high dietary lipid-mediated hepatic insult.

10.
Int J Mol Sci ; 22(4)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673358

RESUMO

Alternative splicing of mRNA is an essential mechanism to regulate and increase the diversity of the transcriptome and proteome. Alternative splicing frequently occurs in a tissue- or time-specific manner, contributing to differential gene expression between cell types during development. Neural tissues present extremely complex splicing programs and display the highest number of alternative splicing events. As an extension of the central nervous system, the retina constitutes an excellent system to illustrate the high diversity of neural transcripts. The retina expresses retinal specific splicing factors and produces a large number of alternative transcripts, including exclusive tissue-specific exons, which require an exquisite regulation. In fact, a current challenge in the genetic diagnosis of inherited retinal diseases stems from the lack of information regarding alternative splicing of retinal genes, as a considerable percentage of mutations alter splicing or the relative production of alternative transcripts. Modulation of alternative splicing in the retina is also instrumental in the design of novel therapeutic approaches for retinal dystrophies, since it enables precision medicine for specific mutations.


Assuntos
Processamento Alternativo , Doenças Genéticas Inatas , Retina/metabolismo , Doenças Retinianas , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Doenças Genéticas Inatas/patologia , Humanos , Retina/patologia , Doenças Retinianas/genética , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia
11.
Genome Biol ; 21(1): 267, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33100228

RESUMO

BACKGROUND: One of the most unusual sources of phylogenetically restricted genes is the molecular domestication of transposable elements into a host genome as functional genes. Although these kinds of events are sometimes at the core of key macroevolutionary changes, their origin and organismal function are generally poorly understood. RESULTS: Here, we identify several previously unreported transposable element domestication events in the human and mouse genomes. Among them, we find a remarkable molecular domestication that gave rise to a multigenic family in placental mammals, the Bex/Tceal gene cluster. These genes, which act as hub proteins within diverse signaling pathways, have been associated with neurological features of human patients carrying genomic microdeletions in chromosome X. The Bex/Tceal genes display neural-enriched patterns and are differentially expressed in human neurological disorders, such as autism and schizophrenia. Two different murine alleles of the cluster member Bex3 display morphological and physiopathological brain modifications, such as reduced interneuron number and hippocampal electrophysiological imbalance, alterations that translate into distinct behavioral phenotypes. CONCLUSIONS: We provide an in-depth understanding of the emergence of a gene cluster that originated by transposon domestication and gene duplication at the origin of placental mammals, an evolutionary process that transformed a non-functional transposon sequence into novel components of the eutherian genome. These genes were integrated into existing signaling pathways involved in the development, maintenance, and function of the CNS in eutherians. At least one of its members, Bex3, is relevant for higher brain functions in placental mammals and may be involved in human neurological disorders.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Elementos de DNA Transponíveis , Domesticação , Eutérios/genética , Família Multigênica , Animais , Transtorno do Espectro Autista/genética , Encéfalo , Sistemas CRISPR-Cas , Proteínas de Ligação a DNA/genética , Evolução Molecular , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas Nucleares/genética , Filogenia , Placenta , Gravidez , Serina-Treonina Quinases TOR/genética , Fatores de Transcrição/genética
12.
Invest Ophthalmol Vis Sci ; 61(8): 14, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32658961

RESUMO

Purpose: Close to 100 genes cause retinitis pigmentosa, a Mendelian rare disease that affects 1 out of 4000 people worldwide. Mutations in the ceramide kinase-like gene (CERKL) are a prevalent cause of autosomal recessive cause retinitis pigmentosa and cone-rod dystrophy, but the functional role of this gene in the retina has yet to be fully determined. We aimed to generate a mouse model that resembles the phenotypic traits of patients carrying CERKL mutations to undertake functional studies and assay therapeutic approaches. Methods: The Cerkl locus has been deleted (around 97 kb of genomic DNA) by gene editing using the CRISPR-Cas9 D10A nickase. Because the deletion of the Cerkl locus is lethal in mice in homozygosis, a double heterozygote mouse model with less than 10% residual Cerkl expression has been generated. The phenotypic alterations of the retina of this new model have been characterized at the morphological and electrophysiological levels. Results: This CerklKD/KO model shows retinal degeneration, with a decreased number of cones and progressive photoreceptor loss, poorly stacked photoreceptor outer segment membranes, defective retinal pigment epithelium phagocytosis, and altered electrophysiological recordings in aged retinas. Conclusions: To our knowledge, this is the first Cerkl mouse model to mimic many of the phenotypic traits, including the slow but progressive retinal degeneration, shown by human patients carrying CERKL mutations. This useful model will provide unprecedented insights into the retinal molecular pathways altered in these patients and will contribute to the design of effective treatments.


Assuntos
Sistemas CRISPR-Cas/genética , DNA/genética , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/genética , Epitélio Pigmentado da Retina/metabolismo , Animais , Células Cultivadas , Análise Mutacional de DNA , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/patologia
13.
Semin Cell Dev Biol ; 102: 40-47, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31761444

RESUMO

The cerebrospinal fluid (CSF) is a waterly, colorless fluid contained within the brain ventricles and the cranial and spinal subarachnoid spaces. CSF physiological functions range from hydromechanical protection of the central nervous system (CNS) to CNS modulation of developmental processes and regulation of interstitial fluid homeostasis. Optic nerve (ON) is surrounded by CSF circulating in the subarachnoid spaces and is exposed to both CSF (CSFP) and intra ocular (IOP) pressures, which converge at the lamina cribrosa (LC) as two opposite forces. The trans-lamina cribrosa pressure gradient (TLPG) is defined as IOP - CSFP and its alterations (due either to an elevation in IOP or a reduction in ICP) could result in structural damaging of the ON, including glaucomatous changes. The purpose of this review is to update the readers on the CSF contribution in controlling the functions/dysfunctions of ON by regulating homeostasis at LC. We also highlight emerging parallelisms regarding the expression of cilia-related genes in the regulation of common functions of body fluids in both brain and eye structures.


Assuntos
Líquido Cefalorraquidiano/metabolismo , Olho/metabolismo , Homeostase , Pressão , Pressão do Líquido Cefalorraquidiano , Humanos
14.
Adv Exp Med Biol ; 1185: 513-517, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31884663

RESUMO

Inherited retinal dystrophies (IRDs) are a broad group of neurodegenerative disorders associated with reduced or deteriorating visual system. In the retina, cells are under constant oxidative stress, leading to elevated reactive oxygen species (ROS) generation that induces mitochondrial dysfunction and alteration of the mitochondrial network. This mitochondrial dysfunction combined with mutations in mitochondrial DNA and nuclear genes makes photoreceptors and retinal ganglion cells more susceptible to cell death. In this minireview, we focus on mitochondrial dynamics and their contribution to neuronal degeneration underlying IRDs, with particular attention to Leber hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (DOA), and propose targeting cell resilience and mitochondrial dynamics modulators as potential therapeutic approaches for retinal disorders.


Assuntos
Mitocôndrias/fisiologia , Atrofia Óptica Autossômica Dominante/patologia , Atrofia Óptica Hereditária de Leber/patologia , Estresse Oxidativo , Retina/citologia , DNA Mitocondrial/genética , Humanos
15.
Front Cell Neurosci ; 10: 47, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26973462

RESUMO

The eutherian X-chromosome specific family of Armcx genes has been described as originating by retrotransposition from Armc10/SVH, a single Arm-containing somatic gene. Armcx3 and Armc10/SVH are characterized by high expression in the central nervous system and they play an important role in the regulation of mitochondrial distribution and transport in neurons. In addition, Armcx/Arm10 genes have several Armadillo repeats in their sequence. In this study we address the potential role of this gene family in neural development by using the chick neural tube as a model. We show that Armc10/SVH is expressed in the chicken spinal cord, and knocking-down Armc10/SVH by sh-RNAi electroporation in spinal cord reduces proliferation of neural precursor cells (NPCs). Moreover, we analyzed the effects of murine Armcx3 and Armc10 overexpression, showing that both proteins regulate progenitor proliferation, while Armcx3 overexpression also specifically controls neural maturation. We show that the phenotypes found following Armcx3 overexpression require its mitochondrial localization, suggesting a novel link between mitochondrial dynamics and regulation of neural development. Furthermore, we found that both Armcx3 and Armc10 may act as inhibitors of Wnt-ß-catenin signaling. Our results highlight both common and differential functions of Armcx/Armc10 genes in neural development in the spinal cord.

16.
Toxicol Sci ; 139(2): 407-20, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24595818

RESUMO

3,4-Methylenedioxymethamphetamine (MDMA; "ecstasy") is a potentially neurotoxic recreational drug of abuse. Though the mechanisms involved are still not completely understood, formation of reactive metabolites and mitochondrial dysfunction contribute to MDMA-related neurotoxicity. Neuronal mitochondrial trafficking, and their targeting to synapses, is essential for proper neuronal function and survival, rendering neurons particularly vulnerable to mitochondrial dysfunction. Indeed, MDMA-associated disruption of Ca(2+) homeostasis and ATP depletion have been described in neurons, thus suggesting possible MDMA interference on mitochondrial dynamics. In this study, we performed real-time functional experiments of mitochondrial trafficking to explore the role of in situ mitochondrial dysfunction in MDMA's neurotoxic actions. We show that the mixture of MDMA and six of its major in vivo metabolites, each compound at 10µM, impaired mitochondrial trafficking and increased the fragmentation of axonal mitochondria in cultured hippocampal neurons. Furthermore, the overexpression of mitofusin 2 (Mfn2) or dynamin-related protein 1 (Drp1) K38A constructs almost completely rescued the trafficking deficits caused by this mixture. Finally, in hippocampal neurons overexpressing a Mfn2 mutant, Mfn2 R94Q, with impaired fusion and transport properties, it was confirmed that a dysregulation of mitochondrial fission/fusion events greatly contributed to the reported trafficking phenotype. In conclusion, our study demonstrated, for the first time, that the mixture of MDMA and its metabolites, at concentrations relevant to the in vivo scenario, impaired mitochondrial trafficking and increased mitochondrial fragmentation in hippocampal neurons, thus providing a new insight in the context of "ecstasy"-induced neuronal injury.


Assuntos
Transporte Axonal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Neurônios/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , GTP Fosfo-Hidrolases/metabolismo , Hipocampo/metabolismo , Camundongos , Neurônios/metabolismo , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Ratos
17.
Arch Toxicol ; 88(8): 1561-72, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24522274

RESUMO

Identification of the mechanisms by which drugs of abuse cause neuronal dysfunction is essential for understanding the biological bases of their acute and long-lasting effects in the brain. Here, we performed real-time functional experiments of axonal transport of mitochondria to explore the role of in situ mitochondrial dysfunction in 3,4-methylenedioxymethamphetamine (MDMA; "ecstasy")-related brain actions. We showed that MDMA dramatically reduced mitochondrial trafficking in hippocampal neurons in a Tau-dependent manner, in which glycogen synthase kinase 3ß activity was implicated. Furthermore, we found that these trafficking abnormalities were rescued by over-expression of Mitofusin2 and dynamin-related protein 1, but not of Miro1. Given the relevance of mitochondrial targeting for neuronal function and neurotransmission, our data underscore a novel mechanism of action of MDMA that may contribute to our understanding of how this drug of abuse alters neuronal functioning.


Assuntos
Dinaminas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Neurônios/efeitos dos fármacos , Proteínas tau/metabolismo , Animais , Transporte Axonal/efeitos dos fármacos , Cálcio/metabolismo , Células Cultivadas , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/embriologia , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Neurônios/metabolismo , Fosforilação
18.
PLoS One ; 8(7): e67773, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23844091

RESUMO

The regulation of mitochondrial dynamics is vital in complex cell types, such as neurons, that transport and localize mitochondria in high energy-demanding cell domains. The Armcx3 gene encodes a mitochondrial-targeted protein (Alex3) that contains several arm-like domains. In a previous study we showed that Alex3 protein regulates mitochondrial aggregation and trafficking. Here we studied the contribution of Wnt proteins to the mitochondrial aggregation and dynamics regulated by Alex3. Overexpression of Alex3 in HEK293 cells caused a marked aggregation of mitochondria, which was attenuated by treatment with several Wnts. We also found that this decrease was caused by Alex3 degradation induced by Wnts. While the Wnt canonical pathway did not alter the pattern of mitochondrial aggregation induced by Alex3, we observed that the Wnt/PKC non-canonical pathway regulated both mitochondrial aggregation and Alex3 protein levels, thereby rendering a mitochondrial phenotype and distribution similar to control patterns. Our data suggest that the Wnt pathway regulates mitochondrial distribution and dynamics through Alex3 protein degradation.


Assuntos
Proteínas do Domínio Armadillo/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Proteínas Mitocondriais/metabolismo , Proteína Quinase C/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Motivos de Aminoácidos , Proteínas do Domínio Armadillo/genética , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Naftalenos/farmacologia , Proteína Quinase C/genética , Inibidores de Proteínas Quinases/farmacologia , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteólise , Proteínas Wnt/genética
19.
Nat Commun ; 3: 814, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22569362

RESUMO

Brain function requires neuronal activity-dependent energy consumption. Neuronal energy supply is controlled by molecular mechanisms that regulate mitochondrial dynamics, including Kinesin motors and Mitofusins, Miro1-2 and Trak2 proteins. Here we show a new protein family that localizes to the mitochondria and controls mitochondrial dynamics. This family of proteins is encoded by an array of armadillo (Arm) repeat-containing genes located on the X chromosome. The Armcx cluster is unique to Eutherian mammals and evolved from a single ancestor gene (Armc10). We show that these genes are highly expressed in the developing and adult nervous system. Furthermore, we demonstrate that Armcx3 expression levels regulate mitochondrial dynamics and trafficking in neurons, and that Alex3 interacts with the Kinesin/Miro/Trak2 complex in a Ca(2+)-dependent manner. Our data provide evidence of a new Eutherian-specific family of mitochondrial proteins that controls mitochondrial dynamics and indicate that this key process is differentially regulated in the brain of higher vertebrates.


Assuntos
Proteínas do Domínio Armadillo/metabolismo , Proteínas de Transporte/metabolismo , Evolução Molecular , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Proteínas do Domínio Armadillo/genética , Proteínas de Transporte/genética , Linhagem Celular , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Família Multigênica , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Transporte Proteico , Proteínas rho de Ligação ao GTP/genética
20.
J Cell Physiol ; 220(2): 410-7, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19365808

RESUMO

NEMO/IKKgamma is the essential regulatory subunit of the IkB Kinase (IKK) complex, required for the activation of Nuclear Factor kB (NF-kB) in many physiological processes such as inflammation, immunity, apoptosis, or development. NEMO works at a converging point of the NF-kB pathway as it interacts with upstream signaling molecules to orchestrate its activation. Here we report on the identification of a novel NEMO-interacting protein, NESCA, an adapter molecule previously shown to be involved in the NGF-pathway via the TrkA receptor. We demonstrated that NESCA and NEMO interact by their N-terminal region. Beside to NEMO, we revealed that NESCA directly associates to the E3 ubiquitin ligase TRAF6, which in turn catalyzes NESCA polyubiquitination. Finally, we demonstrated that NESCA overexpression strongly inhibits TRAF6-mediated polyubiquitination of NEMO. In summary, our results highlight that NESCA represents a novel missing link in the NEMO-mediated NF-kB activation pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Quinase I-kappa B/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular , Humanos , Quinase I-kappa B/genética , Poliubiquitina/metabolismo , Ligação Proteica , Fator 6 Associado a Receptor de TNF/genética , Técnicas do Sistema de Duplo-Híbrido , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA