Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Virol ; 86(23): 12991-6, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22993163

RESUMO

Expression of a retroviral Gag protein in mammalian cells leads to the assembly of virus particles. In vitro, recombinant Gag proteins are soluble but assemble into virus-like particles (VLPs) upon addition of nucleic acid. We have proposed that Gag undergoes a conformational change when it is at a high local concentration and that this change is an essential prerequisite for particle assembly; perhaps one way that this condition can be fulfilled is by the cooperative binding of Gag molecules to nucleic acid. We have now characterized the assembly in human cells of HIV-1 Gag molecules with a variety of defects, including (i) inability to bind to the plasma membrane, (ii) near-total inability of their capsid domains to engage in dimeric interaction, and (iii) drastically compromised ability to bind RNA. We find that Gag molecules with any one of these defects still retain some ability to assemble into roughly spherical objects with roughly correct radius of curvature. However, combination of any two of the defects completely destroys this capability. The results suggest that these three functions are somewhat redundant with respect to their contribution to particle assembly. We suggest that they are alternative mechanisms for the initial concentration of Gag molecules; under our experimental conditions, any two of the three is sufficient to lead to some semblance of correct assembly.


Assuntos
Produtos do Gene gag/metabolismo , HIV-1/fisiologia , Vírion/genética , Montagem de Vírus/fisiologia , Membrana Celular/metabolismo , Primers do DNA/genética , Dimerização , Produtos do Gene gag/genética , HIV-1/genética , Humanos , Immunoblotting , Microscopia Eletrônica de Transmissão , Plasmídeos/genética , RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Montagem de Vírus/genética
2.
PLoS One ; 7(5): e38190, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22666481

RESUMO

APOBEC3 proteins function to restrict the replication of retroviruses. One mechanism of this restriction is deamination of cytidines to uridines in (-) strand DNA, resulting in hypermutation of guanosines to adenosines in viral (+) strands. However, Moloney murine leukemia virus (MoMLV) is partially resistant to restriction by mouse APOBEC3 (mA3) and virtually completely resistant to mA3-induced hypermutation. In contrast, the sequences of MLV genomes that are in mouse DNA suggest that they were susceptible to mA3-induced deamination when they infected the mouse germline. We tested the possibility that sensitivity to mA3 restriction and to deamination resides in the viral gag gene. We generated a chimeric MLV in which the gag gene was from an endogenous MLV in the mouse germline, while the remainder of the viral genome was from MoMLV. This chimera was fully infectious but its response to mA3 was indistinguishable from that of MoMLV. Thus, the Gag protein does not seem to control the sensitivity of MLVs to mA3. We also found that MLVs inactivated by mA3 do not synthesize viral DNA upon infection; thus mA3 restriction of MLV occurs before or at reverse transcription. In contrast, HIV-1 restricted by mA3 and MLVs restricted by human APOBEC3G do synthesize DNA; these DNAs exhibit APOBEC3-induced hypermutation.


Assuntos
Citidina Desaminase/metabolismo , Vírus da Leucemia Murina/fisiologia , Replicação Viral , Animais , Sequência de Bases , Citidina Desaminase/genética , DNA Viral/biossíntese , DNA Viral/genética , Produtos do Gene gag/genética , Humanos , Hibridização Genética , Vírus da Leucemia Murina/genética , Vírus da Leucemia Murina/metabolismo , Vírus da Leucemia Murina/patogenicidade , Camundongos , Vírus da Leucemia Murina de Moloney/genética , Transfecção
3.
J Virol ; 85(9): 4111-21, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21325421

RESUMO

Expression of a retroviral protein, Gag, in mammalian cells is sufficient for assembly of immature virus-like particles (VLPs). VLP assembly is mediated largely by interactions between the capsid (CA) domains of Gag molecules but is facilitated by binding of the nucleocapsid (NC) domain to nucleic acid. We have investigated the role of SP1, a spacer between CA and NC in HIV-1 Gag, in VLP assembly. Mutational analysis showed that even subtle changes in the first 4 residues of SP1 destroy the ability of Gag to assemble correctly, frequently leading to formation of tubes or other misassembled structures rather than proper VLPs. We also studied the conformation of the CA-SP1 junction region in solution, using both molecular dynamics simulations and circular dichroism. Consonant with nuclear magnetic resonance (NMR) studies from other laboratories, we found that SP1 is nearly unstructured in aqueous solution but undergoes a concerted change to an α-helical conformation when the polarity of the environment is reduced by addition of dimethyl sulfoxide (DMSO), trifluoroethanol, or ethanol. Remarkably, such a coil-to-helix transition is also recapitulated in an aqueous medium at high peptide concentrations. The exquisite sensitivity of SP1 to mutational changes and its ability to undergo a concentration-dependent structural transition raise the possibility that SP1 could act as a molecular switch to prime HIV-1 Gag for VLP assembly. We suggest that changes in the local environment of SP1 when Gag oligomerizes on nucleic acid might trigger this switch.


Assuntos
HIV-1/fisiologia , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Animais , Dicroísmo Circular , Análise Mutacional de DNA , Simulação de Dinâmica Molecular , Conformação Proteica , Virossomos/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química
4.
J Virol ; 83(5): 2216-25, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19073719

RESUMO

Expression of the retroviral Gag protein leads to formation of virus-like particles in mammalian cells. In vitro and in vivo experiments show that nucleic acid is also required for particle assembly. However, several studies have demonstrated that chimeric proteins in which the nucleocapsid domain of Gag is replaced by a leucine zipper motif can also assemble efficiently in mammalian cells. We have now analyzed assembly by chimeric proteins in which nucleocapsid of human immunodeficiency virus type 1 (HIV-1) Gag is replaced by either a dimerizing or a trimerizing zipper. Both proteins assemble well in human 293T cells; the released particles lack detectable RNA. The proteins can coassemble into particles together with full-length, wild-type Gag. We purified these proteins from bacterial lysates. These recombinant "Gag-Zipper" proteins are oligomeric in solution and do not assemble unless cofactors are added; either nucleic acid or inositol phosphates (IPs) can promote particle assembly. When mixed with one equivalent of IPs (which do not support assembly of wild-type Gag), the "dimerizing" Gag-Zipper protein misassembles into very small particles, while the "trimerizing" protein assembles correctly. However, addition of both IPs and nucleic acid leads to correct assembly of all three proteins; the "dimerizing" Gag-Zipper protein also assembles correctly if inositol hexakisphosphate is supplemented with other polyanions. We suggest that correct assembly requires both oligomeric association at the C terminus of Gag and neutralization of positive charges near its N terminus.


Assuntos
HIV-1/fisiologia , Zíper de Leucina , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Células Cultivadas , HIV-1/genética , HIV-1/metabolismo , Humanos , RNA Viral/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/isolamento & purificação
5.
J Virol ; 82(13): 6566-75, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18448535

RESUMO

APOBEC3 proteins are cytidine deaminases which help defend cells against retroviral infections. One antiviral mechanism involves deaminating dC residues in minus-strand DNA during reverse transcription, resulting in G-to-A mutations in the coding strand. We investigated the effects of mouse APOBEC3 (mA3) and human APOBEC3G (hA3G) upon Moloney murine leukemia virus (MLV). We find that mA3 inactivates MLV but is significantly less effective against MLV than is hA3G. In contrast, mA3 is as potent against human immunodeficiency virus type 1 (HIV-1, lacking the protective Vif protein) as is hA3G. The two APOBEC3 proteins are packaged to similar extents in MLV particles. Dose-response profiles imply that a single APOBEC3 molecule (or oligomer) is sufficient to inactivate an MLV particle. The inactivation of MLV by mA3 and hA3G is accompanied by relatively small reductions in the amount of viral DNA in infected cells. Although hA3G induces significant levels of G-to-A mutations in both MLV and HIV DNAs, and mA3 induces these mutations in HIV DNA, no such mutations were detected in DNA synthesized by MLV inactivated by mA3. Thus, MLV has apparently evolved to partially resist the antiviral effects of mA3 and to totally resist the ability of mA3 to induce G-to-A mutation in viral DNA. Unlike the resistance of HIV-1 and human T-cell leukemia virus type 1 to hA3G, the resistance of MLV to mA3 is not mediated by the exclusion of APOBEC from the virus particle. The nature of its resistance and the mechanism of inactivation of MLV by mA3 are completely unknown.


Assuntos
Citidina Desaminase/metabolismo , Citosina Desaminase/metabolismo , DNA Viral/genética , Vírus da Leucemia Murina de Moloney/metabolismo , Inativação de Vírus , Desaminases APOBEC , Animais , Sequência de Bases , Linhagem Celular , Citidina Desaminase/genética , Citosina Desaminase/genética , Primers do DNA/genética , Humanos , Immunoblotting , Camundongos , Dados de Sequência Molecular , Vírus da Leucemia Murina de Moloney/genética , Mutação/genética , Análise de Sequência de DNA
6.
J Virol ; 81(12): 6623-31, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17392359

RESUMO

Assembly of retrovirus particles normally entails the selective encapsidation of viral genomic RNA. However, in the absence of packageable viral RNA, assembly is still efficient, and the released virus-like particles (termed "Psi-" particles) still contain roughly normal amounts of RNA. We have proposed that cellular mRNAs replace the genome in Psi- particles. We have now analyzed the mRNA content of Psi- and Psi+ murine leukemia virus (MLV) particles using both microarray analysis and real-time reverse transcription-PCR. The majority of mRNA species present in the virus-producing cells were also detected in Psi- particles. Remarkably, nearly all of them were packaged nonselectively; that is, their representation in the particles was simply proportional to their representation in the cells. However, a small number of low-abundance mRNAs were greatly enriched in the particles. In fact, one mRNA species was enriched to the same degree as Psi+ genomic RNA. Similar results were obtained with particles formed from the human immunodeficiency virus type 1 (HIV-1) Gag protein, and the same mRNAs were enriched in MLV and HIV-1 particles. The levels of individual cellular mRNAs were approximately 5- to 10-fold higher in Psi- than in Psi+ MLV particles, in agreement with the idea that they are replacing viral RNA in the former. In contrast, signal recognition particle RNA was present at the same level in Psi- and Psi+ particles; a minor fraction of this RNA was weakly associated with genomic RNA in Psi+ MLV particles.


Assuntos
HIV/metabolismo , Vírus da Leucemia Murina/genética , Retroviridae/genética , Animais , Northern Blotting , Western Blotting , Primers do DNA/química , Produtos do Gene gag/metabolismo , Humanos , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Viral/metabolismo , Retroviridae/metabolismo , Ribonuclease H/química , Transfecção , Montagem de Vírus
7.
J Virol ; 78(22): 12378-85, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15507624

RESUMO

The retroviral nucleocapsid protein (NC) originates by cleavage of the Gag polyprotein. It is highly basic and contains one or two zinc fingers. Mutations in either the basic residues or the zinc fingers can affect several events of the virus life cycle. They frequently prevent the specific packaging of the viral RNA, affect reverse transcription, and impair virion assembly. In this work, we explore the role of NC in murine leukemia virus (MLV) particle assembly and release. A panel of NC mutants, including mutants of the zinc finger and of a basic region, as well as truncations of the NC domain of Gag, were studied. Several of these mutations dramatically reduce the release of virus particles. A mutant completely lacking the NC domain is apparently incapable of assembling into particles, although its Gag protein is still targeted to the plasma membrane. By electron microscopy on thin sections of virus-producing cells, we observed that some NC mutants exhibit various stages of budding defects at the plasma membrane and have aberrant particle morphology; electron micrographs of cells expressing some of these mutants are strikingly similar to those of cells expressing "late-domain" mutants. However, the defects of NC mutants with respect to virus release and infectivity could be complemented by an MLV lacking the p12 domain. Therefore, the functions of NC in virus budding and infectivity are completely distinct from viral late-domain function.


Assuntos
Vírus da Leucemia Murina/fisiologia , Proteínas do Nucleocapsídeo/fisiologia , Montagem de Vírus , Sequência de Aminoácidos , Produtos do Gene gag/análise , Dados de Sequência Molecular , Morfogênese , Vírion/fisiologia
8.
J Virol ; 78(22): 12537-47, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15507641

RESUMO

Development of a mouse model for human immunodeficiency virus type 1 (HIV-1) infection has advanced through the progressive identification of host cell factors required for HIV-1 replication. Murine cells lack HIV-1 receptor molecules, do not support efficient viral gene expression, and lack factors necessary for the assembly and release of virions. Many of these blocks have been described using mouse fibroblast cell lines. Here we identify a postentry block to HIV-1 infection in mouse T-cell lines that has not been detected in mouse fibroblasts. While murine fibroblastic lines are comparable to human T-cell lines in permissivity to HIV-1 transduction, infection of murine T cells is 100-fold less efficient. Virus entry occurs efficiently in murine T cells. However, reduced efficiency of the completion of reverse transcription and nuclear transfer of the viral preintegration complex are observed. Although this block has similarities to the restriction of murine retroviruses by Fv1, there is no correlation of HIV-1 susceptibility with cellular Fv1 genotypes. In addition, the block to HIV-1 infection in murine T-cell lines cannot be saturated by a high virus dose. Further studies of this newly identified block may lend insight into the early events of retroviral replication and reveal new targets for antiretroviral interventions.


Assuntos
HIV-1/fisiologia , Linfócitos T/virologia , Animais , Expressão Gênica , Genótipo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Vírus da Leucemia Murina de Moloney/fisiologia , Células NIH 3T3 , Proteínas/genética , Transcrição Gênica
9.
J Virol ; 78(20): 10927-38, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15452213

RESUMO

Prior work by others has shown that insertion of psi (i.e., leader) sequences from the Moloney murine leukemia virus (MLV) genome into the 3' untranslated region of a nonviral mRNA leads to the specific encapsidation of this RNA in MLV particles. We now report that these RNAs are, like genomic RNAs, encapsidated as dimers. These dimers have the same thermostability as MLV genomic RNA dimers; like them, these dimers are more stable if isolated from mature virions than from immature virions. We characterized encapsidated mRNAs containing deletions or truncations of MLV psi or with psi sequences from MLV-related acute transforming viruses. The results indicate that the dimeric linkage in genomic RNA can be completely attributed to the psi region of the genome. While this conclusion agrees with earlier electron microscopic studies on mature MLV dimers, it is the first evidence as to the site of the linkage in immature dimers for any retrovirus. Since the Psi(+) mRNA is not encapsidated as well as genomic RNA, it is only present in a minority of virions. The fact that it is nevertheless dimeric argues strongly that two of these molecules are packaged into particles together. We also found that the kissing loop is unnecessary for this coencapsidation or for the stability of mature dimers but makes a major contribution to the stability of immature dimers. Our results are consistent with the hypothesis that the packaging signal involves a dimeric structure in which the RNAs are joined by intermolecular interactions between GACG loops.


Assuntos
Elementos Facilitadores Genéticos , Vírus da Leucemia Murina/metabolismo , RNA Mensageiro/genética , Vírion/metabolismo , Montagem de Vírus , Animais , Sequência de Bases , Linhagem Celular , Dimerização , Humanos , Vírus da Leucemia Murina/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Mensageiro/metabolismo , Transfecção
10.
J Virol ; 78(3): 1411-20, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14722296

RESUMO

A single protein, termed Gag, is responsible for retrovirus particle assembly. After the assembled virion is released from the cell, Gag is cleaved at several sites by the viral protease (PR). The cleavages catalyzed by PR bring about a wide variety of physical changes in the particle, collectively termed maturation, and convert the particle into an infectious virion. In murine leukemia virus (MLV) maturation, Gag is cleaved at three sites, resulting in formation of the matrix (MA), p12, capsid (CA), and nucleocapsid (NC) proteins. We introduced mutations into MLV that inhibited cleavage at individual sites in Gag. All mutants had lost the intensely staining ring characteristic of immature particles; thus, no single cleavage event is required for this feature of maturation. Mutant virions in which MA was not cleaved from p12 were still infectious, with a specific infectivity only approximately 10-fold below that of the wild type. Particles in which p12 and CA could not be separated from each other were noninfectious and lacked a well-delineated core despite the presence of dense material in their interiors. In both of these mutants, the dimeric viral RNA had undergone the stabilization normally associated with maturation, suggesting that this change may depend upon the separation of CA from NC. Alteration of the C-terminal end of CA blocked CA-NC cleavage but also reduced the efficiency of particle formation and, in some cases, severely disrupted the ability of Gag to assemble into regular structures. This observation highlights the critical role of this region of Gag in assembly.


Assuntos
Produtos do Gene gag/metabolismo , Vírus da Leucemia Murina/patogenicidade , Mutação , Vírion/patogenicidade , Montagem de Vírus , Animais , Linhagem Celular , Detergentes/farmacologia , Endopeptidases/metabolismo , Humanos , Vírus da Leucemia Murina/genética , Vírus da Leucemia Murina/metabolismo , Camundongos , Microscopia Eletrônica , Mutagênese Sítio-Dirigida , Células NIH 3T3 , Vírion/metabolismo , Vírion/ultraestrutura
11.
J Virol ; 76(22): 11405-13, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12388701

RESUMO

A single retroviral protein, termed Gag, is sufficient for assembly of retrovirus-like particles in mammalian cells. Gag normally selects the genomic RNA of the virus with high specificity; the nucleocapsid (NC) domain of Gag plays a crucial role in this selection process. However, encapsidation of the viral RNA is completely unnecessary for particle assembly. We previously showed that mutant murine leukemia virus (MuLV) particles that lack viral RNA because of a deletion in the cis-acting packaging signal ("Psi") in the genomic RNA compensate for the loss of the viral RNA by incorporating cellular mRNA. The RNA in wild-type and Psi- particles was also found to be necessary for virion core structure. In the present work, we explored the role of RNA in MuLV particles that lack genomic RNA because of mutations in the NC domain of Gag. Using a fluorescent dye assay, we observed that NC mutant particles contain the same amount of RNA that wild-type virions do. Surprisingly enough, these particles contained large amounts of rRNAs. Furthermore, ribosomal proteins were detected by immunoblotting, and ribosomes were observed inside the particles by electron microscopy. The biological significance of the presence of ribosomes in NC mutant particles lacking genomic RNA is discussed.


Assuntos
Vírus da Leucemia Murina/metabolismo , Mutação , Nucleocapsídeo/metabolismo , RNA Viral/metabolismo , Ribossomos/metabolismo , Vírion/metabolismo , Animais , Linhagem Celular , Genoma Viral , Humanos , Immunoblotting , Vírus da Leucemia Murina/genética , Camundongos , Microscopia Eletrônica , Nucleocapsídeo/genética , RNA Ribossômico/metabolismo , RNA Viral/genética , Montagem de Vírus
12.
J Virol ; 76(19): 10050-5, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12208984

RESUMO

We previously reported that if murine leukemia virus particles are produced in the presence of the mild oxidizing agent disulfide-substituted benzamide-2, they fail to undergo the normal process of virus maturation. We now show that treatment of these immature particles with a reducing agent (dithiothreitol) induces their maturation in vitro, as evidenced by proteolytic cleavage of Gag, Gag-Pol, and Env proteins and by their morphology. The identification of partial cleavage products in these particles suggests the sequence with which the cleavages occur under these conditions. This may be a useful experimental system for further analysis of retroviral maturation under controlled conditions in vitro.


Assuntos
Ditiotreitol/farmacologia , Vírus da Leucemia Murina de Moloney/fisiologia , Células 3T3 , Animais , Dissulfetos , Endopeptidases/fisiologia , Proteínas de Fusão gag-pol/metabolismo , Produtos do Gene env/metabolismo , Produtos do Gene gag/metabolismo , Camundongos , RNA Viral/análise , Vírion/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA