Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nanoscale Horiz ; 8(8): 1122, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37382592

RESUMO

Correction for 'Multiplexed molecular imaging with surface enhanced resonance Raman scattering nanoprobes reveals immunotherapy response in mice via multichannel image segmentation' by Chrysafis Andreou et al., Nanoscale Horiz., 2022, 7, 1540-1552, https://doi.org/10.1039/d2nh00331g.

2.
Nanoscale Horiz ; 7(12): 1540-1552, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36285605

RESUMO

Visualizing the presence and distribution of multiple specific molecular markers within a tumor can reveal the composition of its microenvironment, inform diagnosis, stratify patients, and guide treatment. Raman imaging with multiple molecularly-targeted surface enhanced Raman scattering (SERS) nanoprobes could help investigate emerging cancer treatments preclinically or enable personalized treatment assessment. Here, we report a comprehensive strategy for multiplexed imaging using SERS nanoprobes and machine learning (ML) to monitor the early effects of immune checkpoint blockade (ICB) in tumor-bearing mice. We used antibody-functionalized SERS nanoprobes to visualize 7 + 1 immunotherapy-related targets simultaneously. The multiplexed images were spectrally resolved and then spatially segmented into superpixels based on the unmixed signals. The superpixels were used to train ML models, leading to the successful classification of mice into treated and untreated groups, and identifying tumor regions with variable responses to treatment. This method may help predict treatment efficacy in tumors and identify areas of tumor variability and therapy resistance.


Assuntos
Neoplasias , Análise Espectral Raman , Camundongos , Animais , Análise Espectral Raman/métodos , Imunoterapia , Anticorpos/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Fatores Imunológicos , Imagem Molecular , Microambiente Tumoral
3.
Analyst ; 145(9): 3440-3446, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32259176

RESUMO

Fentanyl and its analogs have been at the center of the opioid epidemic currently wreaking havoc in the United States. One major element in the opioid crisis is the growing number of clandestine fentanyl labs being reported by enforcement agencies. The development of new analytical methods for detecting and identifying fentanyl and its congeners is among the useful tools in our goal to limit the use of this dangerous family of narcotics. Herein we describe an analytical technique using surface-enhanced Raman spectroscopy (SERS) and a microfluidic device, for detecting fentanyl and two of its chemical precursors, despropionylfentanyl (4ANPP) and N-phenethyl-4-piperidinone (NPP). The vibrational spectra of this family of analytes are very similar, making them difficult to distinguish by traditional means. In addition to taking advantage of the sensitivity provided by SERS, we developed a chemometric approach utilizing a hierarchical partial least squares-discriminant analysis algorithm that allowed us to distinguish spectra that possess many similar features.


Assuntos
Fentanila/análise , Análise Espectral Raman/métodos , Analgésicos Opioides/análise , Análise Discriminante , Fentanila/análogos & derivados , Fentanila/química , Dispositivos Lab-On-A-Chip , Análise dos Mínimos Quadrados
4.
Analyst ; 144(5): 1818-1824, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30672922

RESUMO

Direct detection, or inferring the presence of illicit substances, is of great forensic and toxicological value. Surface-enhanced Raman spectroscopy (SERS) has been shown capable of detecting such molecules in a quick and sensitive manner. Herein we describe an analysis strategy for quantitation of low concentrations of three analytes (methamphetamine, cocaine, and papaverine) by SERS analysis using the citrate capping agent that initially saturates the silver nanoparticles' surface as an in situ standard. The citrate is subsequently displaced by the analyte to an extent dependent on the analyte's concentration in the analyte solution. A general model for the competitive adsorption of citrate and a target analyte was developed and used to determine the relative concentrations of the two species coexisting on the surface of the silver nanoparticles. To apply this model, classical least squares (CLS) was used to extract the relative SERS contribution of each of the two species in a given SERS spectrum, thereby accurately determining the analyte concentration in the sample solution. This approach, in essence, transforms citrate into a local standard against which the concentration of an analyte can be reliably determined.

5.
Anal Chem ; 90(13): 7930-7936, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29863841

RESUMO

Rapid chemical identification of drugs of abuse in biological fluids such as saliva is of growing interest in healthcare and law enforcement. Accordingly, a label-free detection platform that accepts biological fluid samples is of great practical value. We report a microfluidics-based dielectrophoresis-induced surface enhanced Raman spectroscopy (SERS) device, which is capable of detecting physiologically relevant concentrations of methamphetamine in saliva in under 2 min. In this device, iodide-modified silver nanoparticles are trapped and released on-demand using electrodes integrated in a microfluidic channel. Principal component analysis (PCA) is used to reliably distinguish methamphetamine-positive samples from the negative control samples. Passivation of the electrodes and flow channels minimizes microchannel fouling by nanoparticles, which allows the device to be cleared and reused multiple times.


Assuntos
Nanopartículas Metálicas/química , Prata/química , Análise Espectral Raman/métodos , Impedância Elétrica , Eletroforese , Análise de Componente Principal , Propriedades de Superfície
6.
Nanomedicine ; 14(4): 1279-1287, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29597048

RESUMO

Canine lower urinary tract neoplasia is a clinically important disease process that has high mortality due to late stage diagnosis and poorly durable response to treatment. Non-invasive diagnostic techniques (e.g. dipstick test, urine cytology) currently have poor diagnostic value, while more invasive tests (e.g. cystoscopy and biopsy) are costly and often require general anesthesia. We have developed and herein describe a quantitative cytological analysis method based on the use of surface-enhanced Raman spectroscopy (SERS), for identifying cancerous transitional cells in urine using SERS biotags (SBTs) carrying the peptide PLZ4 (amino acid sequence cQDGRMGFc) that targets malignant transitional cells. By analyzing the ratio of the PLZ4-SBTs to an on board control we were able to show that transitional cells had significantly higher ratios (P < 0.05) in patients diagnosed with transitional cell carcinoma (TCC) than in healthy samples.


Assuntos
Carcinoma de Células de Transição/diagnóstico , Análise Espectral Raman/métodos , Animais , Biomarcadores Tumorais/urina , Biópsia/métodos , Carcinoma de Células de Transição/urina , Cistoscopia/métodos , Cães , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/urina
7.
Anal Chem ; 89(3): 1684-1688, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28208284

RESUMO

Papaverine is a non-narcotic alkaloid found endemically and uniquely in the latex of the opium poppy. It is normally refined out of the opioids that the latex is typically collected for, hence its presence in a sample is strong prima facie evidence that the carrier from whom the sample was collected is implicated in the mass cultivation of poppies or the collection and handling of their latex. We describe an analysis technique combining surface-enhanced Raman spectroscopy (SERS) with microfluidics for detecting papaverine at low concentrations and show that its SERS spectrum has unique spectroscopic features that allows its detection at low concentrations among typical opioids. The analysis requires approximately 2.5 min from sample loading to results, which is compatible with field use. The weak acid properties of papaverine hydrochloride were investigated, and Raman bands belonging to the protonated and unprotonated forms of the isoquinoline ring of papaverine were identified.

8.
Anal Chem ; 88(21): 10513-10522, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27715011

RESUMO

A microfluidic device is being developed by University of California-Santa Barbara as part of a joint effort with the United States Army to develop a portable, rapid drug detection device. Surface-enhanced Raman spectroscopy (SERS) is used to provide a sensitive, selective detection technique within the microfluidic platform employing metallic nanoparticles as the SERS medium. Using several illicit drugs as analytes, the work presented here describes the efforts of the Edgewood Chemical Biological Center to optimize the microfluidic platform by investigating the role of nanoparticle material, nanoparticle size, excitation wavelength, and capping agents on the performance, and drug concentration detection limits achievable with Ag and Au nanoparticles that will ultimately be incorporated into the final design. This study is particularly important as it lays out a systematic comparison of limits of detection and potential interferences from working with several nanoparticle capping agents-such as tannate, citrate, and borate-which does not seem to have been done previously as the majority of studies only concentrate on citrate as the capping agent. Morphine, cocaine, and methamphetamine were chosen as test analytes for this study and were observed to have limits of detection (LOD) in the range of (1.5-4.7) × 10-8 M (4.5-13 ng/mL), with the borate capping agent having the best performance.


Assuntos
Dispositivos Lab-On-A-Chip , Análise Espectral Raman/instrumentação , Detecção do Abuso de Substâncias/instrumentação , Analgésicos Opioides/análise , Anestésicos Locais/análise , Estimulantes do Sistema Nervoso Central/análise , Cocaína/análise , Ouro/química , Humanos , Limite de Detecção , Nanopartículas Metálicas/química , Metanfetamina/análise , Morfina/análise , Prata/química , Propriedades de Superfície
9.
Analyst ; 140(15): 5003-5, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26087055

RESUMO

Ampicillin, a common antibiotic, is detected at trace concentrations in milk using surface enhanced Raman spectroscopy in a microfluidic device, using less than 20 µL of sample, in 10 minutes, with minimal off-chip preparation. The device is configured so as to favor the interaction of the analyte with colloidal silver, and the optimization of the aggregation of the silver nanoparticles so as to increase the SERS intensity and the consequential sensitivity of analyte detection.


Assuntos
Ampicilina/análise , Antibacterianos/análise , Técnicas Analíticas Microfluídicas/instrumentação , Leite/química , Análise Espectral Raman/instrumentação , Animais , Bovinos , Desenho de Equipamento , Nanopartículas Metálicas/química , Técnicas Analíticas Microfluídicas/economia , Tamanho da Amostra , Prata/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA