RESUMO
The viral replication can impress through cellular miRNAs. Indeed, either the antiviral responses or the viral infection changes through cellular miRNAs resulting in affecting many regulatory signaling pathways. One of the microRNA families that is effective in human cancers, diseases, and viral infections is the miR-29 family. Members of miR-29 family are effective in different viral infections as their roles have appeared in regulation of immunity pathways either in innate immunity including interferon and inflammatory pathways or in adaptive immunity including activation of T-cells and antibodies production. Although miR-29a affects viral replication by suppressing antiviral responses, it can inhibit the expression of viral mRNAs via binding to their 3'UTR. In the present work, we discuss the evidence related to miR-29a and viral infection through host immunity regulation. We also review roles of other miR-29 family members by focusing on their role as biomarkers for diagnosing and targets for viral diseases management.
RESUMO
Neuropsychiatric disorders present a global challenge to public health. Mechanisms associated with neuropsychiatric disorders etiology include apoptosis, oxidative stress, and neuroinflammation. Tumor necrosis factor alpha, an inflammatory cytokine, mediates pathophysiology of neuropsychiatric disorders. Therefore, its inhibition by infliximab might afford a valuable target for intervention. Infliximab is commonly used to treat inflammatory diseases, including ulcerative colitis, Crohn's disease, and rheumatoid arthritis. Recently, it has been shown that infliximab improves cognitive dysfunction, depression, anxiety, and life quality. Here, we review contemporary knowledge supporting the need to further characterize infliximab as a potential treatment for neuropsychiatric disorders.
RESUMO
Cerebral ischemia has the highest global rate of morbidity and mortality. It occurs when a sudden occlusion develops in the arterial system, and consequently some parts of the brain are deprived from glucose and oxygen due to the cessation of blood flow. The ensuing reperfusion of the ischemic area results in a cascade of pathological alternations like neuronal apoptosis by producing excessive reactive oxygen species (ROS), oxidative stress and neuroinflammation. Edaravone Dexborneol is a novel agent, comprised of Edaravone and Dexborneol in a 4:1 ratio. It has documented neuroprotective effects against cerebral ischemia injury. Edaravone Dexborneol improves neurobehavioral and sensorimotor function, cognitive function, brain edema, and blood-brain barrier (BBB) integrity in experimental models. It at dosages ranging between 0.375 and 15 mg/kg (from immediately after ischemia until the 28th post-ischemic days) has shown neuroprotective effects in experimental models of cerebral ischemia by inhibiting cell death-signaling pathways. For example, it inhibits apoptosis by increasing Bcl2, and reducing Bax and caspase-3 expression. Edaravone Dexborneol also inhibits pyroptosis by attenuating NF-κB/NLRP3/GSDMD signaling, as well as ferroptosis by activating the Nrf-2/HO-1/GPX4 signaling pathway. It also inhibits autophagy by targeting PI3K/Akt/mTOR signaling pathway. Here, we provide a review on the impacts of Edaravone Dexborneol on cerebral ischemia.
Assuntos
Isquemia Encefálica , Edaravone , Fármacos Neuroprotetores , Transdução de Sinais , Edaravone/farmacologia , Edaravone/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Humanos , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismoRESUMO
Objective: The green synthesis of Tin(IV) oxide (SnO2): Gold (Au) nanoparticles (NPs) using Teucrium polium medicinal plant extract was investigated, and the NPs were characterized and tested as photosensitizers to produce reactive oxygen species (ROS). Methods: The cytotoxic effect on C26 cells was investigated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) technique. The results showed their toxicity in a dose-dependent manner. The green synthesis of SnO2:Au NPs was achieved for the first time using an extract of T. polium medicinal plant as a reducing and stabilizing agent. The produced NPs were examined for their application in photodynamic therapy (PDT) for cancer. Results: Methylene blue and anthracene were used to confirm that the photosensitizer could produce ROS when excited with UVA radiation. The anticancer activity of SnO2:Au was investigated in vitro using the C26 cell line and an MTT assay, showing that PDT with SnO2:Au NPs could inhibit cancer cell proliferation. Conclusions: The significant afterglow of the SnO2:Au NPs could cause the generation of ROS to continue several minutes after switching off the light source.
Assuntos
Ouro , Nanopartículas Metálicas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Extratos Vegetais , Teucrium , Compostos de Estanho , Extratos Vegetais/farmacologia , Ouro/química , Teucrium/química , Fármacos Fotossensibilizantes/farmacologia , Nanopartículas Metálicas/química , Espécies Reativas de Oxigênio/metabolismo , Química Verde , Linhagem Celular Tumoral , Humanos , Proliferação de Células/efeitos dos fármacosRESUMO
Myocardial infarction (MI) stands at top global causes of death in developed countries, owing mostly to atherosclerotic plaque growth and endothelial injury-induced reduction in coronary blood flow. While early reperfusion techniques have improved outcomes, long-term treatment continues to be difficult. The function of lncRNAs extends to regulating gene expression in various conditions, both physiological and pathological, such as cardiovascular diseases. The objective of this research is to extensively evaluate the significance of the lncRNA called Metastasis associated lung adenocarcinoma transcript 1 (MALAT1) in the development and management of MI. According to research, MALAT1 is implicated in processes such as autophagy, apoptosis, cell proliferation, and inflammation in the cardiovascular system. This investigation examines recent research examining the effects of MALAT1 on heart function and its potential as a mean of diagnosis and treatment for post- MI complications and ischemic reperfusion injury.
RESUMO
Despite the waning of traditional treatments for glioma due to possible long-term issues, the healing possibilities of substances derived from nature have been reignited in the scientific community. These natural substances, commonly found in fruits and vegetables, are considered potential alternatives to pharmaceuticals, as they have been shown in prior research to impact pathways surrounding cancer progression, metastases, invasion, and resistance. This review will explore the supposed molecular mechanisms of different natural components, such as berberine, curcumin, coffee, resveratrol, epigallocatechin-3-gallate, quercetin, tanshinone, silymarin, coumarin, and lycopene, concerning glioma treatment. While the benefits of a balanced diet containing these compounds are widely recognized, there is considerable scope for investigating the efficacy of these natural products in treating glioma.
RESUMO
Chemotherapy and radiotherapy are widely used in clinical practice across the globe as cancer treatments. Intrinsic or acquired chemoresistance poses a significant problem for medical practitioners and researchers, causing tumor recurrence and metastasis. The most dangerous kind of malignant brain tumor is called glioblastoma multiforme (GBM) that often recurs following surgery. The most often used medication for treating GBM is temozolomide chemotherapy; however, most patients eventually become resistant. Researchers are studying preclinical models that accurately reflect human disease and can be used to speed up drug development to overcome chemoresistance in GBM. Non-coding RNAs (ncRNAs) have been shown to be substantial in regulating tumor development and facilitating treatment resistance in several cancers, such as GBM. In this work, we mentioned the mechanisms of how different ncRNAs (microRNAs, long non-coding RNAs, circular RNAs) can regulate temozolomide chemosensitivity in GBM. We also address the role of these ncRNAs encapsulated inside secreted exosomes.
RESUMO
Cancers affecting the biliary tract, such as gallbladder cancer and cholangiocarcinoma, make up a small percentage of adult gastrointestinal malignancies, but their incidence is on the rise. Due to the lack of dependable molecular biomarkers for diagnosis and prognosis, these cancers are often not detected until later stages and have limited treatment options. Piwi-interacting RNAs (piRNAs) are a type of small noncoding RNA that interacts with Piwi proteins and has been linked to various diseases, especially cancer. Manipulation of piRNA expression has the potential to serve as an important biomarker and target for therapy. This review uncovers the relationship between PIWI-interacting RNA (piRNA) and a variety of gastrointestinal cancers, including biliary tract cancer (BTC). It is evident that piRNAs have the ability to impact gene expression and regulate key genes and pathways related to the advancement of digestive cancers. Abnormal expression of piRNAs plays a significant role in the development and progression of digestive-related malignancies. The potential of piRNAs as potential biomarkers for diagnosis and prognosis, as well as therapeutic targets in BTC, is noteworthy. Nevertheless, there are obstacles and limitations that require further exploration to fully comprehend piRNAs' role in BTC and to devise effective diagnostic and therapeutic approaches using piRNAs. In summary, this review underscores the value of piRNAs as valuable biomarkers and promising targets for treating BTC, as we delve into the association between piRNAs and various gastrointestinal cancers, including BTC, and how piRNAs can impact gene expression and control essential pathways for digestive cancer advancement. The present research consists of a thorough evaluation presented in a storytelling style. The databases utilized to locate original sources were PubMed, MEDLINE, and Google Scholar, and the search was conducted using the designated keywords.
RESUMO
Pancreatic cancer (PaC) incidence is increasing, but our current screening and diagnostic strategies are not very effective. However, screening could be helpful in the case of PaC, as recent evidence shows that the disease progresses gradually. Unfortunately, there is no ideal screening method or program for detecting PaC in its early stages. Conventional imaging techniques, such as abdominal ultrasound, CT, MRI, and EUS, have not been successful in detecting early-stage PaC. On the other hand, biomarkers may be a more effective screening tool for PaC and have greater potential for further evaluation compared to imaging. Recent studies on biomarkers and artificial intelligence (AI)-enhanced imaging have shown promising results in the early diagnosis of PaC. In addition to proteins, non-coding RNAs are also being studied as potential biomarkers for PaC. This review consolidates the current literature on PaC screening modalities to provide an organized framework for future studies. While conventional imaging techniques have not been effective in detecting early-stage PaC, biomarkers and AI-enhanced imaging are promising avenues of research. Further studies on the use of biomarkers, particularly non-coding RNAs, in combination with imaging modalities may improve the accuracy of PaC screening and lead to earlier detection of this deadly disease.
RESUMO
Gastrointestinal cancer is the most fatal cancer worldwide. The etiology of gastrointestinal cancer has yet to be fully characterized. Alcohol consumption, obesity, tobacco, Helicobacter pylori and gastrointestinal disorders, including gastroesophageal reflux disease, gastric ulcer, colon polyps and non-alcoholic fatty liver disease are among the several risks factors for gastrointestinal cancers. Phycocyanin which is abundant in Spirulina. Phycocyanin, a member of phycobiliprotein family with intense blue color, is an anti-diabetic, neuroprotective, anti-oxidative, anti-inflammatory, and anticancer compound. Evidence exists supporting that phycocyanin has antitumor effects, exerting its pharmacological effects by targeting a variety of cellular and molecular processes, i.e., apoptosis, cell-cycle arrest, migration and Wnt/ß-catenin signaling. Phycocyanin has also been applied in treatment of several gastrointestinal disorders such as, gastric ulcer, ulcerative colitis and fatty liver that is known as a risk factor for progression to cancer. Herein, we summarize various cellular and molecular pathways that are affected by phycocyanin, its efficacy upon combined drug treatment, and the potential for nanotechnology in its gastrointestinal cancer therapy.
Assuntos
Neoplasias Gastrointestinais , Ficocianina , Humanos , Ficocianina/farmacologia , Ficocianina/uso terapêutico , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Gastroenteropatias/tratamento farmacológico , Gastroenteropatias/metabolismoRESUMO
Purpose: This study was carried out to evaluate the effects of probiotics administration on clinical status and metabolic profiles in diabetic retinopathy (DR) patients. Methods: This randomized, double-blind, placebo-controlled trial was conducted among 72 DR patients. Subjects received probiotics including Lactobacillus acidophilus, Bifidobacterium bifidum, Bifidobacterium langum, Bifidobacterium lactis daily (2 × 109 CFU/each strain) (n = 36) or placebo (starch) (n = 36) and were instructed to take one capsule daily for 12 weeks. Finally, 55 participants [probiotic group (n = 30) and placebo group (n = 25)] completed the study. Fasting blood samples were obtained at baseline and after the 12-week intervention to determine metabolic profiles. To determine the effects of probiotic supplementation on clinical symptoms and biochemical variables, we used one-way repeated measures analysis of variance. Results: After the 12-week intervention, compared with the placebo, probiotic supplementation significantly decreased means serum insulin concentrations (Probiotic group: -4.9 ± 6.5vs. Placebo group: 3.0 ± 7.7 µIU/mL, Ptime×group<0.001), homeostatic model assessment for insulin resistance (Probiotic group: -2.5 ± 3.8 vs. Placebo group: 1.1 ± 2.7, Ptime×group<0.001) and hemoglobin A1c (HbA1C) (Probiotic group: -0.4 ± 0.7 vs. Placebo group: -0.02 ± 0.2%, Ptime×group=0.01), and significantly increased the quantitative insulin sensitivity check index (QUICKI) (Probiotic group: 0.02 ± 0.03 vs. Placebo group: -0.03 ± 0.04, Ptime×group<0.001). There was no significant effect of probiotic administration on other metabolic profiles and clinical symptoms. Conclusions: Overall, probiotic supplementation after 12 weeks in DR patients had beneficial effects on few metabolic profiles. This study was registered under the Iranian website for clinical trials as http://www.irct.ir: IRCT20130211012438N29.
RESUMO
Gastroenteritis infection is a major public health concern worldwide, especially in developing countries due to the high annual mortality rate. The antimicrobial and antibiofilm activity of human mesenchymal stem cell-derived conditioned medium (hMSCsCM) encapsulated in chitosan nanoparticles (ChNPs) was studied in vitro and in vivo against common gastroenteritis bacteria. The synthesized ChNPs were characterized using Zeta potential, scanning electron microscopy (SEM), and dynamic light scattering (DLS) techniques. HMSC-derived conditioned medium incorporated into chitosan NPs (hMSCsCM-ChNPs) composite was fabricated by chitosan nanoparticles loaded with BM-MSCs (positive for CD73 and CD44 markers). The antimicrobial and antibiofilm activity of composite was investigated against four common gastroenteritis bacteria (Campylobacter jejuni ATCC29428, Salmonella enteritidis ATCC13076, Shigella dysenteriae PTCC1188, and E. coli ATCC25922) in-vitro and in-vivo. Majority of ChNPs (96%) had an average particle size of 329 nm with zeta potential 7.08 mV. The SEM images confirmed the synthesis of spherical shape for ChNPs and a near-spherical shape for hMSCsCM-ChNPs. Entrapment efficiency of hMSCsCM-ChNPs was 75%. Kinetic profiling revealed that the release rate of mesenchymal stem cells was reduced following the pH reduction. The antibacterial activity of hMSCsCM-ChNPs was significantly greater than that of hMSCsCM and ChNPs at dilutions of 1:2 to 1:8 (P < 0.05) against four common gastroenteritis bacteria. The number of bacteria present decreased more significantly in the group of mice treated with the hMSCsCM-ChNPs composite than in the groups treated with hMSCsCM and ChNPs. The antibacterial activity of hMSCsCM against common gastroenteritis bacteria in an in vivo assay decreased from > 106 CFU/ml to approximately (102 to 10) after 72 h. Both in vitro and in vivo assays demonstrated the antimicrobial and antibiofilm activities of ChNPs at a concentration of 0.1% and hMSCsCM at a concentration of 1000 µg/ml to be inferior to that of hMSCsCM-ChNPs (1000 µg/ml + 0.1%) composite. These results indicated the existence of a synergistic effect between ChNPs and hMSCsCM. The designed composite exhibited notable antibiofilm and antibacterial activities, demonstrating optimal release in simulated intestinal lumen conditions. The utilization of this composite is proposed as a novel treatment approach to combat gastroenteritis bacteria in the context of more challenging infections.
Assuntos
Antibacterianos , Quitosana , Gastroenterite , Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Quitosana/química , Quitosana/farmacologia , Humanos , Animais , Meios de Cultivo Condicionados/farmacologia , Camundongos , Antibacterianos/farmacologia , Antibacterianos/química , Gastroenterite/microbiologia , Testes de Sensibilidade Microbiana , Nanopartículas/química , Campylobacter jejuni/efeitos dos fármacos , Salmonella enteritidis/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Shigella dysenteriae/efeitos dos fármacos , Nanoestruturas/química , Tamanho da PartículaRESUMO
Proteases, enzymes that hydrolyze peptide bonds, have various applications in medicine, clinical applications, and pharmaceutical development. They are used in cancer treatment, wound debridement, contact lens cleaning, prion degradation, biofilm removal, and fibrinolytic agents. Proteases are also crucial in cardiovascular disease treatment, emphasizing the need for safe, affordable, and effective fibrinolytic drugs. Proteolytic enzymes and protease biosensors are increasingly used in diagnostic and therapeutic applications. Advanced technologies, such as nanomaterials-based sensors, are being developed to enhance the sensitivity, specificity, and versatility of protease biosensors. These biosensors are becoming effective tools for disease detection due to their precision and rapidity. They can detect extracellular and intracellular proteases, as well as fluorescence-based methods for real-time and label-free detection of virus-related proteases. The active utilization of proteolytic enzymatic biosensors is expected to expand significantly in biomedical research, in-vitro model systems, and drug development. We focused on journal articles and books published in English between 1982 and 2024 for this study.
RESUMO
Enforcing a well-differentiated state on cells requires tumor suppressor p53 activation as a key player in apoptosis induction and well differentiation. In addition, recent investigations showed a significant correlation between poorly differentiated status and higher expression of NANOG. Inducing the expression of NANOG and decreasing p53 level switch the status of liver cancer cells from well differentiated to poorly status. In this review, we highlighted p53 and NANOG cross-talk in hepatocellular carcinoma (HCC) which is regulated through mitophagy and makes it a novel molecular target to attenuate cancerous phenotype in the management of this tumor.
RESUMO
Neuropsychiatric and neurological disorders pose a significant global health burden, highlighting the need for innovative therapeutic approaches. Fingolimod (FTY720), a common drug to treat multiple sclerosis, has shown promising efficacy against various neuropsychiatric and neurological disorders. Fingolimod exerts its neuroprotective effects by targeting multiple cellular and molecular processes, such as apoptosis, oxidative stress, neuroinflammation, and autophagy. By modulating Sphingosine-1-Phosphate Receptor activity, a key regulator of immune cell trafficking and neuronal function, it also affects synaptic activity and strengthens memory formation. In the hippocampus, fingolimod decreases glutamate levels and increases GABA levels, suggesting a potential role in modulating synaptic transmission and neuronal excitability. Taken together, fingolimod has emerged as a promising neuroprotective agent for neuropsychiatric and neurological disorders. Its broad spectrum of cellular and molecular effects, including the modulation of apoptosis, oxidative stress, neuroinflammation, autophagy, and synaptic plasticity, provides a comprehensive therapeutic approach for these debilitating conditions. Further research is warranted to fully elucidate the mechanisms of action of fingolimod and optimize its use in the treatment of neuropsychiatric and neurological disorders.
Assuntos
Cloridrato de Fingolimode , Doenças do Sistema Nervoso , Fármacos Neuroprotetores , Cloridrato de Fingolimode/uso terapêutico , Cloridrato de Fingolimode/farmacologia , Humanos , Animais , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Cognição/efeitos dos fármacos , Cognição/fisiologia , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/metabolismo , Moduladores do Receptor de Esfingosina 1 Fosfato/uso terapêutico , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacologia , Estresse Oxidativo/efeitos dos fármacosRESUMO
Elite controllers (ECs) defined as a small subclass of subjects with HIV capable of controlling human immunodeficiency virus (HIV) replication in the lack of antiretroviral treatment. One class of RNA molecules that serve as vital components in the network of HIV-related transcriptional regulation, are long noncoding RNAs (lncRNAs). The critical part that they take is in transcriptional regulation of HIV through monitoring various cellular signaling pathways. Reportedly, AKT and MAPK signaling pathways serve a crucial role in modulation of HIV infection. In the current investigation, we utilized bioinformatics tools to predict the lncRNAs that have the ability to interact with MAPK3, AKT, and FOXO1. Then, PBMC expression levels of lncRNAs and their target genes (AKT, FOXO1 and MAPK3) measured in the ECs (n = 15), HIV-positive (n = 40) patients and healthy control subjects (n = 40). We found a significant increase and decrease in the level of AKT and FOXO1 expression within the ECs group, respectively than in the HIV + group (P-value <0.0001 and 0.04, respectively). In the ECs group, the level of TINCR and RP11-156E8.1 was overexpressed compared to the HIV + group (P-value: 0.004 and 0.001, respectively). While RP11-573D15.8 level in ECs exhibited a significant suppression in contrast to HIV + group (P-value: 0.02). According to the receiver-operating characteristic (ROC) curve results, AKT and TINCR could serve as useful biomarkers for screening ECs groups from HIV + patients and healthy control groups. Overall, different expression patterns of selected factors and ROC curve results showed these factors could critically contribute to HIV controlling and be considered as diagnostic markers for ECs from HIV + samples.
RESUMO
Cardiovascular disease, specifically heart failure (HF), remains a significant concern in the realm of healthcare, necessitating the development of new treatments and biomarkers. The RNA family consists of various subgroups, including microRNAs, PIWI-interacting RNAs (piRAN) and long non-coding RNAs, which have shown potential in advancing personalized healthcare for HF patients. Recent research suggests that circular RNAs, a lesser-known subgroup of RNAs, may offer a novel set of targets and biomarkers for HF. This review will discuss the biogenesis of circular RNAs, their unique characteristics relevant to HF, their role in heart function, and their potential use as biomarkers in the bloodstream. Furthermore, future research directions in this field will be outlined. The stability of exosomal circRNAs makes them suitable as biomarkers, pathogenic regulators, and potential treatments for cardiovascular diseases such as atherosclerosis, acute coronary syndrome, ischemia/reperfusion injury, HF, and peripheral artery disease. Herein, we summarized the role of circular RNAs and their exosomal forms in HF diseases.
Assuntos
Biomarcadores , Exossomos , Insuficiência Cardíaca , RNA Circular , RNA Circular/genética , RNA Circular/metabolismo , Humanos , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Biomarcadores/metabolismo , Exossomos/metabolismo , Exossomos/genética , Animais , MicroRNAs/genética , MicroRNAs/metabolismoRESUMO
Because long non-coding RNAs (lncRNAs) can affect several interconnected processes, its value as a predictive marker for gastric cancer has been demonstrated. Coumarin - a natural compound known to contain some beneficial antitumor qualities - was tested for its effects on AGS gastric cancer cells. In this study, we investigated the expression level of selected cellular lncRNAs (BANCR, MALAT1 and FER1L4) and their target genes (PTEN, p-PI3K and p-AKT) in coumarin-treated AGS cell line. The expressions of the three lncRNAs: BANCR, MALAT1 and FER1L4, as well as their specified targets, PTEN, PI3K and AKT, were measured by qRT-PCR. To gauge the impact of coumarin on the AGS cells, a MTT assay was utilized. A Western blot has been employed to assess variations in PTEN, p-PI3K, and p-AKT expression. The experiment's results showed that AGS viability diminished with increasing doses of coumarin. Compared to the control cells, the cells exposed to coumarin had showed reduced levels of mRNAs which are known targets of the lncRNA BANCR. At the same time, levels of lncRNAs MALAT1 and FER1L4 within coumarin group have been higher comparing to those within control group. Additionally, the Western blot analysis revealed that the coumarin-treated cells expressed lower levels of p-PI3K, PTEN as well as p-AKT compared to control group. This information points to coumarin being a possible option in a treatment regimen for gastric cancer due to its ability to affect lncRNAs and the molecules they target.
Assuntos
Cumarínicos , RNA Longo não Codificante , Neoplasias Gástricas , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Cumarínicos/farmacologia , Linhagem Celular Tumoral , Neoplasias Gástricas/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismoRESUMO
Abnormalities in epigenetic modifications can cause malignant transformations in cells, leading to cancers of the gastrointestinal (GI) tract, which accounts for 20% of all cancers worldwide. Among the epigenetic alterations, DNA hypomethylation is associated with genomic instability. In addition, CpG methylation and promoter hypermethylation have been recognized as biomarkers for different malignancies. In GI cancers, epigenetic alterations affect genes responsible for cell cycle control, DNA repair, apoptosis, and tumorigenic-specific signaling pathways. Understanding the pattern of alterations in DNA methylation in GI cancers could help scientists discover new molecular-based pharmaceutical treatments. This study highlights alterations in DNA methylation in GI cancers. Understanding epigenetic differences among GI cancers may improve targeted therapies and lead to the discovery of new diagnostic biomarkers.
Assuntos
Metilação de DNA , Epigênese Genética , Neoplasias Gastrointestinais , Metilação de DNA/genética , Humanos , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/patologia , Animais , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genéticaRESUMO
MicroRNAs (miRs, miRNAs) are known to have a part in various human illnesses, such as those related to the heart. One particular miRNA, miR-155, has been extensively studied and has been found to be involved in hematopoietic lineage differentiation, immunity, viral infections, inflammation, as well as vascular remodeling. These processes have all been connected to cardiovascular diseases, including heart failure, diabetic heart disease, coronary artery disease, and abdominal aortic aneurysm. The impacts of miR-155 depend on the type of cell it is acting on and the specific target genes involved, resulting in different mechanisms of disease. Although, the exact part of miR-155 in cardiovascular illnesses is yet not fully comprehended, as some studies have shown it to promote the development of atherosclerosis while others have shown it to prevent it. As a result, to comprehend the underlying processes of miR-155 in cardiovascular disorders, further thorough study is required. It has been discovered that exosomes that could be absorbed by adjacent or distant cells, control post-transcriptional regulation of gene expression by focusing on mRNA. Exosomal miRNAs have been found to have a range of functions, including participating in inflammatory reactions, cell movement, growth, death, autophagy, as well as epithelial-mesenchymal transition. An increasing amount of research indicates that exosomal miRNAs are important for cardiovascular health and have a major role in the development of a number of cardiovascular disorders, including pulmonary hypertension, atherosclerosis, acute coronary syndrome, heart failure, and myocardial ischemia-reperfusion injury. Herein the role of miR-155 and its exosomal form in heart diseases are summarized.