RESUMO
BACKGROUND: Both SARS-CoV-2 mRNA-based vaccines [BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna)] have shown high efficacy, with very modest side effects in limiting transmission of SARS-CoV-2 and in preventing the severe COVID-19 disease, characterized by a worrying high occupation of intensive care units (ICU), high frequency of intubation and ultimately high mortality rate. At the INT, in Naples, only the BNT162b2/Pfizer vaccine has been administered to cancer patients and healthcare professionals aged 16 and over. In the present study, the antibody response levels and their decline were monitored in an interval of 6-9 months after vaccine administration in the two different cohorts of workers of the INT - IRCCS "Fondazione Pascale" Cancer Center (Naples, Italy): the group of individuals previously infected with SARS-CoV-2 and vaccinated with a single dose; and that of individuals negative for previous exposure to SARS-CoV-2 vaccinated with two doses 21 days apart. METHODS: Specific anti-RBD (receptor-binding domain) titers against trimeric spike glycoprotein (S) of SARS-CoV-2 by Roche Elecsys Anti-SARS-CoV-2 S ECLIA immunoassay were determined in serum samples of 27 healthcare workers with a previously documented history of SARS-CoV-2 infection and 123 healthcare workers without, during antibody titers' monitoring. Moreover, geometric mean titers (GMT) and relative fold changes (FC) were calculated. RESULTS: Bimodal titer decline was observed in both previously infected and uninfected SARS-CoV-2 subjects. A first rapid decline was followed by a progressive slow decline in the 6/9 month-period before the further vaccine boost. The trend was explained by 2 different mathematical models, exponential and power function, the latter revealing as predictive of antibody titer decline either in infected or in not previously infected ones. The value of the prolonged lower vaccine titer was about 1 log below in the 6/9-month interval after the single dose for previously infected individuals with SARS-CoV-2 and the two doses for those not previously infected. The titer change, after the boost dose administration, on the other hand, was ≥ 1.5 FC higher than the titers at the 6/9-month time-points in both cohorts. A similar quantitative immune titer was observed in both cohorts 8 days after the last boost dose. The subsequent immunoresponse trend remains to be verified. DISCUSSION: The results show that a very rapid first decline, from the highest antibody peak, was followed by a very slow decline which ensured immune protection lasting more than 6 months. The apparent absence of adverse effects of the rapid decline on the vaccine's immune protective role has been related to a large majority of low avidity antibodies induced by current vaccines. High avidity antibodies with prolonged anti-transmission efficacy show a longer half-life and are lost over a longer interval period. The cellular immunity, capable of preventing severe clinical diseases, lasts much longer. The unbalanced dual activity (cellular vs humoral) while effective in limiting ICU pressure and overall mortality, does not protect against transmission of SARS-CoV-2, resulting in high circulation of the virus among unvaccinated subjects, including the younger population, and the continuous production of variants characterized by changes in transmissibility and pathogenicity. The high mutation rate, peculiar to the RNA virus, can however lead to a dual opposite results: selection of defective and less efficient viruses up to extinction; risk of more efficiently transmitted variants as the current omicron pandemic. CONCLUSIONS: In conclusion the current bimodal antibody-titer decline, following BNT162b2 mRNA anti-SARS-CoV-2 vaccination, needs a further extended analysis to verify the protective borderline levels of immunity and the optimal administration schedule of vaccine boosters. Our current results can contribute to such goal, besides a direct comparison of other FDA-approved and candidate vaccines.
RESUMO
BACKGROUND: From the beginning of 2020, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) quickly spread worldwide, becoming the main problem for the healthcare systems. Healthcare workers (HCWs) are at higher risk of infection and can be a dangerous vehicle for the spread of the virus. Furthermore, cancer patients (CPs) are a vulnerable population, with an increased risk of developing severe and lethal forms of Coronavirus Disease 19 (COVID-19). Therefore, at the National Cancer Institute of Naples, where only cancer patients are treated, a surveillance program aimed to prevent the hospital access of SARS-CoV-2 positive subjects (HCWs and CPs) was implemented. The study aims to describe the results of the monitoring activity for the SARS-CoV-2 spread among HCWs and CPs, from March 2020 to March 2021. METHODS: This surveillance program included a periodic sampling through nasopharyngeal molecular swabs for SARS-CoV-2 (Real-Time Polymerase Chain Reaction, RT-PCR). CPs were submitted to the molecular test at least 48 h before hospital admission. Survival analysis and multiple logistic regression models were performed among HCWs and CPs to assess the main SARS-CoV-2 risk factors. RESULTS: The percentages of HCWs tested with RT-PCR for the detection of SARS-CoV-2, according to the first and the second wave, were 79.7% and 91.7%, respectively, while the percentages for the CPs were 24.6% and 39.6%. SARS-CoV-2 was detected in 20 (1.7%) HCWs of the 1204 subjects tested during the first wave, and in 127 (9.2%) of 1385 subjects tested in the second wave (p < 0.001); among CPs, the prevalence of patients tested varied from 100 (4.6%) during the first wave to 168 (4.9%) during the second wave (p = 0.8). The multivariate logistic analysis provided a significant OR for nurses (OR = 2.24, 95% CI 1.23-4.08, p < 0.001) compared to research, administrative staff, and other job titles. CONCLUSIONS: Our findings show that the positivity rate between the two waves in the HCWs increased over time but not in the CPs; therefore, the importance of adopting stringent measures to contain the shock wave of SARS-CoV-2 infection in the hospital setting was essential. Among HCWs, nurses are more exposed to contagion and patients who needed continuity in oncological care for diseases other than COVID-19, such as suspected cancer.
RESUMO
The response to anti-SARS-Cov-2 preventive vaccine shows high interpersonal variability at short and medium term. One of the explanations might be the individual HLA allelic variants. Indeed, B cell response is stimulated and sustained by CD4+ T helper cells activated by antigens presented by HLA-class II alleles on antigen-presenting cells (APCs). The impact of the number of antigens binding to HLA class-II alleles on the antibody response to the COVID vaccine has been assessed in a cohort of 56 healthcare workers who received the full schedule of the Pfizer-BioNTech BNT162b2 vaccine. Such vaccine is based on the entire spike protein of the SARS-CoV-2. Ab titers have been evaluated 2 weeks after the first dose as well as 2 weeks and 4 months after the boosting dose. HLA-DRB1 and DBQ1 for each of the vaccinees have been assessed, and strong binders have been predicted. The analysis showed no significant correlation between the short-medium-term Ab titers and the number of strong binders (SB) for each individual. These results indicate that levels of Ab response to the spike glycoprotein is not dependent on HLA class II allele, suggesting an equivalent efficacy at global level of the currently used vaccines. Furthermore, the pattern of persistence in Ab titer does not correlate with specific alleles or with the number of SBs.
Assuntos
Anticorpos Antivirais/sangue , Vacinas contra COVID-19/imunologia , Antígenos HLA-D/imunologia , SARS-CoV-2/imunologia , Anticorpos Antivirais/imunologia , Afinidade de Anticorpos/imunologia , Antígenos Virais/imunologia , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , Glicoproteína da Espícula de Coronavírus/imunologiaRESUMO
BACKGROUND: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and the resulting disease, coronavirus disease 2019 (COVID-19), have spread to millions of people globally, requiring the development of billions of different vaccine doses. The SARS-CoV-2 spike mRNA vaccine (named BNT162b2/Pfizer), authorized by the FDA, has shown high efficacy in preventing SARS-CoV-2 infection after administration of two doses in individuals 16 years of age and older. In the present study, we retrospectively evaluated the differences in the SARS-CoV-2 humoral immune response after vaccine administration in the two different cohorts of workers at the INT - IRCCS "Fondazione Pascale" Cancer Center (Naples, Italy): previously infected to SARS-CoV-2 subjects and not infected to SARS-CoV-2 subjects. METHODS: We determined specific anti-RBD (receptor-binding domain) titers against trimeric spike glycoprotein (S) of SARS-CoV-2 by Roche Elecsys Anti-SARS-CoV-2 S immunoassay in serum samples of 35 healthcare workers with a previous documented history of SARS-CoV-2 infection and 158 healthcare workers without, after 1 and 2 doses of vaccine, respectively. Moreover, geometric mean titers and relative fold changes (FC) were calculated. RESULTS: Both previously infected and not infected to SARS-CoV-2 subjects developed significant immune responses to SARS-CoV-2 after the administration of 1 and 2 doses of vaccine, respectively. Anti-S antibody responses to the first dose of vaccine were significantly higher in previously SARS-CoV-2-infected subjects in comparison to titers of not infected subjects after the first as well as the second dose of vaccine. Fold changes for subjects previously infected to SARS-CoV-2 was very modest, given the high basal antibody titer, as well as the upper limit of 2500.0 BAU/mL imposed by the Roche methods. Conversely, for naïve subjects, mean fold change following the first dose was low ([Formula: see text] =1.6), reaching 3.8 FC in 72 subjects (45.6%) following the second dose. CONCLUSIONS: The results showed that, as early as the first dose, SARS-CoV-2-infected individuals developed a remarkable and statistically significant immune response in comparison to those who did not contract the virus previously, suggesting the possibility of administering only one dose in previously SARS-CoV-2-infected subjects. FC for previously infected subjects should not be taken into account for the generally high pre-vaccination values. Conversely, FC for not infected subjects, after the second dose, were = 3.8 in > 45.0% of vaccinees, and ≤ 3.1 in 19.0%, the latter showing a potential susceptibility to further SARS-CoV-2 infection.
RESUMO
BACKGROUND: The easy access to a quick diagnosis of coronavirus disease 2019 (COVID-19) is a key point to improve the management of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to contain its spread. Up to now, laboratory real-time PCR is the standard of care, but requires a fully equipped laboratory and significant infrastructure. Consequently, new diagnostic tools are required. METHODS: In the present work, the diagnostic accuracy of the point-of-care rapid test "bKIT Virus Finder COVID-19" (Hyris Ltd) is evaluated by a retrospective and a prospective analysis on SARS CoV-2 samples previously assessed with an FDA "authorized for the emergency use-EUA" reference method. Descriptive statistics were used for the present study. RESULTS: Results obtained with the Hyris Kit are the same as that of standard laboratory-based real time PCR methods for all the analyzed samples. In addition, the Hyris Kit provides the test results in less than 2 h, a significantly shorter time compared to the reference methods, without the need of a fully equipped laboratory. CONCLUSIONS: To conclude, the Hyris kit represents a promising tool to improve the health surveillance and to increase the capacity of SARS-CoV-2 testing.
Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito , COVID-19/epidemiologia , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19/normas , Teste de Ácido Nucleico para COVID-19/estatística & dados numéricos , Diagnóstico Precoce , Humanos , Itália/epidemiologia , Limite de Detecção , Pandemias , Sistemas Automatizados de Assistência Junto ao Leito/normas , Sistemas Automatizados de Assistência Junto ao Leito/estatística & dados numéricos , Estudos Prospectivos , Padrões de Referência , Estudos Retrospectivos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade , Pesquisa Translacional BiomédicaRESUMO
COVID-19 pandemic following the outbreak in China and Western Europe, where it finally lost the momentum, is now devastating North and South America. It has not been identified the reason and the molecular mechanisms of the two different patterns of the pulmonary host responses to the virus from a minimal disease in young subjects to a severe distress syndrome (ARDS) in older subjects, particularly those with previous chronic diseases (including diabetes) and cancer. The Management of the Istituto Nazionale Tumori - IRCCS "Fondazione Pascale" in Naples (INT-Pascale), along with all Health professionals decided not to interrupt the treatment of those hospitalized and to continue, even if after a careful triage in order not to allow SARS-CoV-2 positive subjects to access, to take care of cancer patients with serious conditions. Although very few (n = 3) patients developed a symptomatic COVID-19 and required the transfer to a COVID-19 area of the Institute, no patients died during the hospitalization and completed their oncology treatment. Besides monitoring of the patients, all employees of the Institute (physicians, nurses, researchers, lawyers, accountants, gatekeepers, guardians, janitors) have been tested for a possible exposure. Personnel identified as positive, has been promptly subjected to home quarantine and subdued to health surveillance. One severe case of respiratory distress has been reported in a positive employees and one death of a family member. Further steps to home monitoring of COVID-19 clinical course have been taken with the development of remote Wi-Fi connected digital devices for the detection of early signs of respiratory distress, including heart rate and oxygen saturation.In conclusion cancer care has been performed and continued safely also during COVID-19 pandemic and further remote home strategies are in progress to ensure the appropriate monitoring of cancer patients.
RESUMO
Nephrologists worldwide are gradually coping with elderly patients. This is because of the burden of chronic disease in the aging population and specifically chronic kidney disease (CKD). CKD in the elderly rarely occurs in isolation from other chronic conditions and can often be a marker of these conditions themselves. Geriatricians usually take care of chronic conditions and are trained to perform comprehensive geriatric assessment, a tool to estimate frailty, that is the risk of adverse outcome, disability, and death in the clinical setting of elderly inpatients. Unfortunately, they are not used to a CHD invasive and non-invasive approach and so there is no doubt about the need for a co-managed care model for these patients. However, where and how this model must be realized is still questionable. New hospital care models are patient-centered and encompass the concepts of departments to embrace the differentiated levels of care approach. According to this model the hospital is subdivided into three different standards of care: 1-high; 2 -intermediate; 3- low and this organization avoids inpatients being transferred frequently to different units, receiving specific care easily obtained by moving and changing the medical staff in charge of the patient. The lean care approach integrates the principles of the Toyota Producing System (TPS), a leading system of the industrial world, into intensity-based hospital care, thereby maximizing quality processes and promoting co-managed care as in the nephro-geriatric clinical setting.