Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
NAR Genom Bioinform ; 5(1): lqad014, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36879900

RESUMO

Bulk transcriptomes are an essential data resource for understanding basic and disease biology. However, integrating information from different experiments remains challenging because of the batch effect generated by various technological and biological variations in the transcriptome. Numerous batch-correction methods to deal with this batch effect have been developed in the past. However, a user-friendly workflow to select the most appropriate batch-correction method for the given set of experiments is still missing. We present the SelectBCM tool that prioritizes the most appropriate batch-correction method for a given set of bulk transcriptomic experiments, improving biological clustering and gene differential expression analysis. We demonstrate the applicability of the SelectBCM tool on analyses of real data for two common diseases, rheumatoid arthritis and osteoarthritis, and one example to characterize a biological state, where we performed a meta-analysis of the macrophage activation state. The R package is available at https://github.com/ebi-gene-expression-group/selectBCM.

2.
Front Oncol ; 12: 954512, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36249025

RESUMO

Cancer cells are known to undergo metabolic adaptation to cater to their enhanced energy demand. Nicotinamide adenine dinucleotide (NAD) is an essential metabolite regulating many cellular processes within the cell. The enzymes required for NAD synthesis, starting from the base precursor - tryptophan, are expressed in the liver and the kidney, while all other tissues convert NAD from intermediate precursors. The liver, being an active metabolic organ, is a primary contributor to NAD biosynthesis. Inhibition of key enzymes in the NAD biosynthetic pathways is proposed as a strategy for designing anti-cancer drugs. On the other hand, NAD supplementation has also been reported to be beneficial in cancer in some cases. As metabolic adaptation that occurs in cancer cells can lead to perturbations to the pathways, it is important to understand the exact nature of the perturbation in each individual patient. To investigate this, we use a mathematical modelling approach integrated with transcriptomes of patient samples from the TCGA-LIHC cohort. Quantitative profiling of the NAD biosynthesis pathway helps us understand the NAD biosynthetic status and changes in the controlling steps of the pathway. Our results indicate that NAD biosynthesis is heterogeneous among liver cancer patients, and that Nicotinate phosphoribosyl transferase (NAPRT) levels are indicative of the NAD biosynthetic status. Further, we find that reduced NAPRT levels combined with reduced Nicotinamide phosphoribosyl transferase (NAMPT) levels contribute to poor prognosis. Identification of the precise subgroup who may benefit from NAD supplementation in subgroup with low levels of NAPRT and NAMPT could be explored to improve patient outcome.

3.
FEBS J ; 285(21): 3977-3992, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30136368

RESUMO

Sorafenib (SFB), a multi-kinase inhibitor, is the only approved drug for treating hepatocellular carcinoma (HCC). However, SFB shows low efficacy in many cases. HCC related mortality therefore remains to be high worldwide. SFB, a multi-kinase inhibitor is also known to modulate the redox homeostasis in cancer cells. To understand the effect of SFB on the redox status, a quantitative understanding of the system is necessary. Kinetic modeling of the relevant pathways is a useful approach for obtaining a quantitative understanding of the pathway dynamics and to rank the individual factors based on the extent of influence they wield on the pathway. Here, we report a comprehensive model of the glutathione reaction network (GSHnet ), consisting of four modules and includes SFB-induced redox stress. We compared GSHnet simulations for HCC of six different etiologies with healthy liver, and correctly identified the expected variations in cancer. Next, we studied alterations induced in the system upon SFB treatment and observed differential H2 O2 dynamics in all the conditions. Using metabolic control analysis, we identified glutathione S-transferase (GST) as the enzyme with the highest selective control coefficient, making it an attractive co-target for potentiating the action of SFB across all six etiologies. As a proof-of-concept, we selected ethacrynic acid (EA), a known inhibitor of GST, and verified ex vivo that EA synergistically potentiates the cytotoxic effect of SFB. Being an FDA approved drug, EA is a promising candidate for repurposing as a combination therapy with SFB for HCC treatment.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Sinergismo Farmacológico , Glutationa Transferase/metabolismo , Glutationa/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Modelos Biológicos , Sorafenibe/farmacologia , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Resistencia a Medicamentos Antineoplásicos , Humanos , Peróxido de Hidrogênio/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Células Tumorais Cultivadas
4.
J Biol Chem ; 293(10): 3492-3509, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29259134

RESUMO

There is a pressing need for new therapeutics to combat multidrug- and carbapenem-resistant bacterial pathogens. This challenge prompted us to use a long short-term memory (LSTM) language model to understand the underlying grammar, i.e. the arrangement and frequencies of amino acid residues, in known antimicrobial peptide sequences. According to the output of our LSTM network, we synthesized 10 peptides and tested them against known bacterial pathogens. All of these peptides displayed broad-spectrum antimicrobial activity, validating our LSTM-based peptide design approach. Our two most effective antimicrobial peptides displayed activity against multidrug-resistant clinical isolates of Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and coagulase-negative staphylococci strains. High activity against extended-spectrum ß-lactamase, methicillin-resistant S. aureus, and carbapenem-resistant strains was also observed. Our peptides selectively interacted with and disrupted bacterial cell membranes and caused secondary gene-regulatory effects. Initial structural characterization revealed that our most effective peptide appeared to be well folded. We conclude that our LSTM-based peptide design approach appears to have correctly deciphered the underlying grammar of antimicrobial peptide sequences, as demonstrated by the experimentally observed efficacy of our designed peptides.


Assuntos
Antibacterianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Desenho de Fármacos , Farmacorresistência Bacteriana Múltipla , Infecções por Enterobacteriaceae/tratamento farmacológico , Engenharia de Proteínas , Animais , Antibacterianos/efeitos adversos , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/efeitos adversos , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/crescimento & desenvolvimento , Enterobacteriáceas Resistentes a Carbapenêmicos/ultraestrutura , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Biologia Computacional , Infecções por Enterobacteriaceae/microbiologia , Feminino , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Aprendizado de Máquina , Masculino , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Conformação Proteica , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Testes de Toxicidade Aguda
5.
NPJ Syst Biol Appl ; 3: 4, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28649431

RESUMO

Tuberculosis remains a major global health challenge worldwide, causing more than a million deaths annually. To determine newer methods for detecting and combating the disease, it is necessary to characterise global host responses to infection. Several high throughput omics studies have provided a rich resource including a list of several genes differentially regulated in tuberculosis. An integrated analysis of these studies is necessary to identify a unified response to the infection. Such data integration is met with several challenges owing to platform dependency, patient heterogeneity, and variability in the extent of infection, resulting in little overlap among different datasets. Network-based approaches offer newer alternatives to integrate and compare diverse data. In this study, we describe a meta-analysis of host's whole blood transcriptomic profiles that were integrated into a genome-scale protein-protein interaction network to generate response networks in active tuberculosis, and monitor their behaviour over treatment. We report the emergence of a highly active common core in disease, showing partial reversals upon treatment. The core comprises 380 genes in which STAT1, phospholipid scramblase 1 (PLSCR1), C1QB, OAS1, GBP2 and PSMB9 are prominent hubs. This network captures the interplay between several biological processes including pro-inflammatory responses, apoptosis, complement signalling, cytoskeletal rearrangement, and enhanced cytokine and chemokine signalling. The common core is specific to tuberculosis, and was validated on an independent dataset from an Indian cohort. A network-based approach thus enables the identification of common regulators that characterise the molecular response to infection, providing a platform-independent foundation to leverage maximum insights from available clinical data.

6.
BMC Genomics ; 17 Suppl 4: 543, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27556637

RESUMO

BACKGROUND: In biological systems, diseases are caused by small perturbations in a complex network of interactions between proteins. Perturbations typically affect only a small number of proteins, which go on to disturb a larger part of the network. To counteract this, a stress-response is launched, resulting in a complex pattern of variations in the cell. Identifying the key players involved in either spreading the perturbation or responding to it can give us important insights. RESULTS: We develop an algorithm, EpiTracer, which identifies the key proteins, or epicenters, from which a large number of changes in the protein-protein interaction (PPI) network ripple out. We propose a new centrality measure, ripple centrality, which measures how effectively a change at a particular node can ripple across the network by identifying highest activity paths specific to the condition of interest, obtained by mapping gene expression profiles to the PPI network. We demonstrate the algorithm using an overexpression study and a knockdown study. In the overexpression study, the gene that was overexpressed (PARK2) was highlighted as the most important epicenter specific to the perturbation. The other top-ranked epicenters were involved in either supporting the activity of PARK2, or counteracting it. Also, 5 of the identified epicenters showed no significant differential expression, showing that our method can find information which simple differential expression analysis cannot. In the second dataset (SP1 knockdown), alternative regulators of SP1 targets were highlighted as epicenters. Also, the gene that was knocked down (SP1) was picked up as an epicenter specific to the control condition. Sensitivity analysis showed that the genes identified as epicenters remain largely unaffected by small changes. CONCLUSIONS: We develop an algorithm, EpiTracer, to find epicenters in condition-specific biological networks, given the PPI network and gene expression levels. EpiTracer includes programs which can extract the immediate influence zone of epicenters and provide a summary of dysregulated genes, facilitating quick biological analysis. We demonstrate its efficacy on two datasets with differing characteristics, highlighting its general applicability. We also show that EpiTracer is not sensitive to minor changes in the network. The source code for EpiTracer is provided at Github ( https://github.com/narmada26/EpiTracer ).


Assuntos
Algoritmos , Biologia Computacional , Regulação da Expressão Gênica/genética , Mapas de Interação de Proteínas/genética , Técnicas de Silenciamento de Genes , Software , Fator de Transcrição Sp1/genética , Ubiquitina-Proteína Ligases/genética
7.
J Chem Inf Model ; 56(5): 843-53, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-26958865

RESUMO

The biosynthesis of NAD constitutes an important metabolic module in the cell, since NAD is an essential cofactor involved in several metabolic reactions. NAD concentrations are known to be significantly increased in several cancers, particularly in glioma, consistent with the observation of up-regulation of several enzymes of the network. Modulating NAD biosynthesis in glioma is therefore an attractive therapeutic strategy. Here we report reconstruction of a biochemical network of NAD biosynthesis consisting of 22 proteins, 36 metabolites, and 86 parameters, tuned to mimic the conditions in glioma. Kinetic simulations of the network provide comprehensive insights about the role of individual enzymes. Further, quantitative changes in the same network between different states of health and disease enable identification of drug targets, based on specific alterations in the given disease. Through simulations of enzyme inhibition titrations, we identify NMPRTase as a potential drug target, while eliminating other possible candidates NMNAT, NAPRTase, and NRK. We have also simulated titrations of both binding affinities as well as inhibitor concentrations, which provide insights into the druggability limits of the target, a novel aspect that can provide useful guidelines for designing inhibitors with optimal affinities. Our simulations suggest that an inhibitor affinity of 10 nM used in a concentration range of 0.1 to 10 µM achieves a near maximal inhibition response for NMPRTase and that increasing the affinity any further is not likely to have a significant advantage. Thus, the quantitative appreciation defines a maximal extent of inhibition possible for a chosen enzyme in the context of its network. Knowledge of this type enables an upper affinity threshold to be defined as a goal in lead screening and refinement stages in drug discovery.


Assuntos
Descoberta de Drogas/métodos , Enzimas/metabolismo , Glioma/tratamento farmacológico , Glioma/enzimologia , Modelos Biológicos , Terapia de Alvo Molecular , NAD/biossíntese , Linhagem Celular Tumoral , Glioma/metabolismo , Humanos , Cinética
8.
PLoS One ; 10(8): e0135507, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26263546

RESUMO

Lipocalins constitute a superfamily of extracellular proteins that are found in all three kingdoms of life. Although very divergent in their sequences and functions, they show remarkable similarity in 3-D structures. Lipocalins bind and transport small hydrophobic molecules. Earlier sequence-based phylogenetic studies of lipocalins highlighted that they have a long evolutionary history. However the molecular and structural basis of their functional diversity is not completely understood. The main objective of the present study is to understand functional diversity of the lipocalins using a structure-based phylogenetic approach. The present study with 39 protein domains from the lipocalin superfamily suggests that the clusters of lipocalins obtained by structure-based phylogeny correspond well with the functional diversity. The detailed analysis on each of the clusters and sub-clusters reveals that the 39 lipocalin domains cluster based on their mode of ligand binding though the clustering was performed on the basis of gross domain structure. The outliers in the phylogenetic tree are often from single member families. Also structure-based phylogenetic approach has provided pointers to assign putative function for the domains of unknown function in lipocalin family. The approach employed in the present study can be used in the future for the functional identification of new lipocalin proteins and may be extended to other protein families where members show poor sequence similarity but high structural similarity.


Assuntos
Lipocalinas/química , Lipocalinas/genética , Família Multigênica , Filogenia , Conformação Proteica , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Lipocalinas/classificação , Lipocalinas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Quantitativa Estrutura-Atividade , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA