Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(3)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033502

RESUMO

The deposition of amyloid-ß (Aß) plaques in the brain is a significant pathological signature of Alzheimer's disease, correlating with synaptic dysfunction and neurodegeneration. Several compounds, peptides, or drugs have been designed to redirect or stop Aß aggregation. Among them, the trideca-peptide CWG-LRKLRKRLLR (mApoE), which is derived from the receptor binding sequence of apolipoprotein E, is effectively able to inhibit Aß aggregation and to promote fibril disaggregation. Taking advantage of Atomic Force Microscopy (AFM) imaging and fluorescence techniques, we investigate if the clustering of mApoE on gold nanoparticles (AuNP) surface may affect its performance in controlling Aß aggregation/disaggregation processes. The results showed that the ability of free mApoE to destroy preformed Aß fibrils or to hinder the Aß aggregation process is preserved after its clustering on AuNP. This allows the possibility to design multifunctional drug delivery systems with clustering of anti-amyloidogenic molecules on any NP surface without affecting their performance in controlling Aß aggregation processes.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/metabolismo , Nanopartículas Metálicas/química , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Encéfalo/metabolismo , Análise por Conglomerados , Ouro/química , Humanos , Placa Amiloide/metabolismo , Ligação Proteica/fisiologia
2.
Biophys J ; 110(10): 2151-61, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27224480

RESUMO

Platinum-containing molecules are widely used as anticancer drugs. These molecules exert cytotoxic effects by binding to DNA through various mechanisms. The binding between DNA and platinum-based drugs hinders the opening of DNA, and therefore, DNA duplication and transcription are severely hampered. Overall, impeding the above-mentioned important DNA mechanisms results in irreversible DNA damage and the induction of apoptosis. Several molecules, including multinuclear platinum compounds, belong to the family of platinum drugs, and there is a body of research devoted to developing more efficient and less toxic versions of these compounds. In this study, we combined different biophysical methods, including single-molecule assays (magnetic tweezers) and bulk experiments (ultraviolet absorption for thermal denaturation) to analyze the differential stability of double-stranded DNA in complex with either cisplatin or multinuclear platinum agents. Specifically, we analyzed how the binding of BBR3005 and BBR3464, two representative multinuclear platinum-based compounds, to DNA affects its stability as compared with cisplatin binding. Our results suggest that single-molecule approaches can provide insights into the drug-DNA interactions that underlie drug potency and provide information that is complementary to that generated from bulk analysis; thus, single-molecule approaches have the potential to facilitate the selection and design of optimized drug compounds. In particular, relevant differences in DNA stability at the single-molecule level are demonstrated by analyzing nanomechanically induced DNA denaturation. On the basis of the comparison between the single-molecule and bulk analyses, we suggest that transplatinated drugs are able to locally destabilize small portions of the DNA chain, whereas other regions are stabilized.


Assuntos
Antineoplásicos/farmacologia , DNA/efeitos dos fármacos , Compostos Organoplatínicos/farmacologia , Algoritmos , Cisplatino/farmacologia , DNA/metabolismo , Congelamento , Estrutura Molecular , Desnaturação de Ácido Nucleico/efeitos dos fármacos , Plasmídeos/genética , Análise Espectral
3.
Nucleic Acids Res ; 43(22): 10722-33, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26354864

RESUMO

Cytosine methylation is a widespread epigenetic regulation mechanism. In healthy mature cells, methylation occurs at CpG dinucleotides within promoters, where it primarily silences gene expression by modifying the binding affinity of transcription factors to the promoters. Conversely, a recent study showed that in stem cells and cancer cell precursors, methylation also occurs at non-CpG pairs and involves introns and even gene bodies. The epigenetic role of such methylations and the molecular mechanisms by which they induce gene regulation remain elusive. The topology of both physiological and aberrant non-CpG methylation patterns still has to be detailed and could be revealed by using the differential stability of the duplexes formed between site-specific oligonucleotide probes and the corresponding methylated regions of genomic DNA. Here, we present a systematic study of the thermal stability of a DNA oligonucleotide sequence as a function of the number and position of non-CpG methylation sites. The melting temperatures were determined by monitoring the fluorescence of donor-acceptor dual-labelled oligonucleotides at various temperatures. An empirical model that estimates the methylation-induced variations in the standard values of hybridization entropy and enthalpy was developed.


Assuntos
Metilação de DNA , DNA/química , Fluorometria , Desnaturação de Ácido Nucleico , Sondas de Oligonucleotídeos , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA