Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Sci Total Environ ; 933: 172690, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38670361

RESUMO

Nitrification is a serious water-quality issue in chloraminated engineered water systems (EWSs). Nitrification is often remediated by a chlorine burn (i.e., a free­chlorine conversion), a short-term switch from chloramination to chlorination in EWSs. Opportunistic pathogens (OPs) are the dominant infectious agents in EWSs. However, the responses of OPs to a chlorine burn are unknown. This study for the first time assessed how a chlorine burn affected OPs in a full-scale EWS. We determined the impact of a 1.5-month chlorine burn on four dominant OPs (Legionella, Mycobacterium, Pseudomonas, and Vermamoeba vermiformis) in a representative full-scale chloraminated EWS in the United States. Legionella and Mycobacterium were the most abundant OPs. In the water main, the summed concentration of the four OPs during the chlorine burn [3.27 ± 1.58 log10(GCN·L-1); GCN: genome or gene copy number] was lower (p ≤ 0.001) than before the burn [4.83 ± 0.50 log10(GCN·L-1)]. After the burn, the summed concentration increased to 4.27 ± 0.68 log10(GCN·L-1), comparable to before the burn (p > 0.05), indicating a transient effect of the chlorine burn in the water main. At the residential sites, the summed concentrations of the four OPs were comparable (p > 0.05) at 5.50 ± 0.84, 5.27 ± 1.44, and 5.08 ± 0.71 log10(GCN·L-1) before, during, and after the chlorine burn, respectively. Therefore, the chlorine burn was less effective in suppressing OP (re)growth in the premise plumbing. The low effectiveness might be due to more significant water stagnation and disinfectant residual decay in the premise plumbing. Indeed, for the entire sampling period, the total chlorine residual concentration in the premise plumbing (1.8 mg Cl2·L-1) was lower than in the water main (2.4 mg Cl2·L-1). Consequently, for the entire sampling period, the summed concentration of the four OPs in the premise plumbing [5.26 ± 1.08 log10(GCN·L-1)] was significantly higher (p < 0.001) than in the water main [4.04 ± 1.25 log10(GCN·L-1)]. In addition, the chlorine burn substantially increased the levels of disinfection by-products (DBPs) in the water main. Altogether, a chlorine burn is transient or even ineffective in suppressing OP (re)growth but raises DBP concentrations in chloraminated EWSs. Therefore, the practice of chlorine burns to control nitrification should be optimized, reconsidered, or even replaced.

2.
Sci Total Environ ; 927: 172112, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556005

RESUMO

The number of nontuberculous mycobacteria (NTM) lung disease cases is increasing in the United States (US). This respiratory disease is primarily caused by three NTM species: Mycobacterium avium, M. intracellulare, and M. abscessus. Since disease transmission could occur through water aerosolization, this study investigated these three species' occurrence (sporadic and persistent) in hot water samples collected from residences (n = 70) and office buildings (n = 30) across the US. A longitudinal survey design was used. Three quantitative Polymerase Chain Reaction (qPCR) assays were used to measure the mycobacterial species in the water samples. Additionally, the water's disinfectant residual was measured. A structure's age and square footage were evaluated to predict mycobacterial contamination. Also, the seasonal occurrence of each species was assessed by structure type. Residences had a 43 % (30/70), and office buildings had a 77 % (23/30) detection frequency of one or more Mycobacterium spp. in their hot water. The age of the structure influenced M. intracellulare detection frequency but not M. avium and M. abscessus. The structure's square footage affected M. avium and M. intracellulare detection frequency but not M. abscessus. In chlorinated water, M. intracellulare was detected 1.4× more often in office buildings' hot water than in chloraminated water. In chloraminated water, the Mycobacterium spp. were detected 2-2.5× more often in residences, while M. avium and M. abscessus were detected 1.5-2.3× more often in office buildings, compared to chlorinated water. Each Mycobacterium spp. had a different trend associated with the type of structure and disinfectant. Further research is needed to better understand NTM occurrence in the built environment to improve public health.


Assuntos
Desinfetantes , Microbiologia da Água , Desinfetantes/análise , Micobactérias não Tuberculosas , Mycobacterium , Monitoramento Ambiental/métodos , Estados Unidos
3.
Water Res ; 238: 119989, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37137207

RESUMO

Legionellosis is a respiratory disease of public health concern. The bacterium Legionella pneumophila is the etiologic agent responsible for >90% of legionellosis cases in the United States. Legionellosis transmission primarily occurs through the inhalation or aspiration of contaminated water aerosols or droplets. Therefore, a thorough understanding of L. pneumophila detection methods and their performance in various water quality conditions is needed to develop preventive measures. Two hundred and nine potable water samples were collected from taps in buildings across the United States. L. pneumophila was determined using three culture methods: Buffered Charcoal Yeast Extract (BCYE) culture with Matrix-assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) identification, Legiolert® 10- and 100-mL tests, and one molecular method: quantitative Polymerase Chain Reaction (qPCR) assay. Culture and molecular positive results were confirmed by secondary testing including MALDI-MS. Eight water quality variables were studied, including source water type, secondary disinfectant, total chlorine residual, heterotrophic bacteria, total organic carbon (TOC), pH, water hardness, cold- and hot-water lines. The eight water quality variables were segmented into 28 categories, based on scale and ranges, and method performance was evaluated in each of these categories. Additionally, a Legionella genus qPCR assay was used to determine the water quality variables that promote or hinder Legionella spp. occurrence. L. pneumophila detection frequency ranged from 2 to 22% across the methods tested. Method performance parameters of sensitivity, specificity, positive and negative predictive values, and accuracy were >94% for the qPCR method but ranged from 9 to 100% for the culture methods. Water quality influenced L. pneumophila determination by culture and qPCR methods. L. pneumophila qPCR detection frequencies positively correlated with TOC and heterotrophic bacterial counts. The source water-disinfectant combination influenced the proportion of Legionella spp. that is L. pneumophila. Water quality influences L. pneumophila determination. To accurately detect L. pneumophila, method selection should consider the water quality in addition to the purpose of testing (general environmental monitoring versus disease-associated investigations).


Assuntos
Desinfetantes , Legionella pneumophila , Legionella , Legionelose , Humanos , Qualidade da Água , Legionelose/epidemiologia , Legionelose/microbiologia , Legionelose/prevenção & controle , Microbiologia da Água , Abastecimento de Água
4.
Int J Hyg Environ Health ; 245: 114023, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36058110

RESUMO

AIM: To observe how Legionella pneumophila, the causative agent for legionellosis, can transmit through the hot water plumbing of residences and office buildings. METHOD AND RESULTS: Using qPCR, L. pneumophila and L. pneumophila Serogroup (Sg)1 were measured in hot water samples collected from 100 structures, consisting of 70 residences and 30 office buildings. The hot water samples collected from office buildings had a higher L. pneumophila detection frequency of 53% (16/30) than residences, with a 103 GU/L (median) concentration. An office building's age was not a statistically significant predictor of contamination, but its area (>100,000 sq. ft.) was, P = <0.001. Hot water samples collected at residences had a lower L. pneumophila detection frequency of 36% (25/70) than office buildings, with a 100 GU/L (median) concentration. A residence's age was a significant predictor of contamination, P = 0.009, but not its area. The water's secondary disinfectant type did not affect L. pneumophila detection frequency nor its concentration in residences, but the secondary disinfectant type did affect results in office buildings. Legionella pneumophila's highest detection frequencies were in samples collected in March-August for office buildings and in June-November for residences. CONCLUSION: This study revealed that the built environment influences L. pneumophila transport and fate. Residential plumbing could be a potential "conduit" for L. pneumophila exposure from a source upstream of the hot water environment. Both old and newly built office buildings had an equal probability of L. pneumophila contamination. Legionella-related remediation efforts in office buildings (that contain commercial functions only) might not significantly improve a community's public health.


Assuntos
Desinfetantes , Legionella pneumophila , Legionella , Engenharia Sanitária , Água , Microbiologia da Água , Abastecimento de Água
5.
Appl Microbiol Biotechnol ; 106(7): 2715-2727, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35298694

RESUMO

Nontuberculous mycobacterium (NTM) infections are increasing in the USA and have a high cost burden associated with treatment. Thus, it is necessary to understand what changes could be contributing to this increase in NTM disease rate. Water samples from 40 sites were collected from around the USA. They represented three water types: groundwater disinfected with chlorine and surface water disinfected with chlorine or monochloramine. Two methods, culture and qPCR, were used to measure M. avium and M. intracellulare. Heterotrophic bacteria and NTM counts were also measured. M. avium and M. intracellulare were molecularly detected in 25% (73/292) and 35% (102/292) of samples. The mean concentrations of M. avium and M. intracellulare were 2.8 × 103 and 4.0 × 103 genomic units (GU) L-1. The Northeast sites had the highest sample positively rate for both M. avium and M. intracellulare. The highest NTM counts and M. avium concentrations were observed in the surface water treated with chloramine. Geographic location and source water/disinfectant type were observed to significantly influence M. avium and M. intracellulare occurrence rates. These studies can help improve public health risk management by balancing disinfectant treatments and diverse microbial loads in drinking water. KEY POINTS: • M. avium (MA) culture rate increased significantly: 1% (1999) to 13%. • Culture versus qPCR method: 13% vs 31% for MA and 6% vs 35% for MI. • The results of each method type tell two different stories of MA and MI occurrence.


Assuntos
Desinfetantes , Água Potável , Cloro , Desinfetantes/farmacologia , Água Potável/microbiologia , Mycobacterium avium/genética , Complexo Mycobacterium avium/genética
6.
J Environ Eng (New York) ; 149(1): 1-12, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37593338

RESUMO

Four chloraminated drinking water distribution systems (CDWDSs) required to maintain numeric versus "detectable" residuals were spatially and temporally sampled for water quality and associated trihalomethane (THM) and haloacetic acid (HAA) formation. Monochloramine decreased from entry point (EP) to maximum residence time (MRT) samples while THMs and HAAs initially increased and then stabilized or slightly decreased. Subsequently, EP and MRT samples were used in laboratory-held studies to further evaluate disinfectant residual stability, chloramine speciation, and nitrification occurrence. MRT water exhibited a faster monochloramine concentration decline compared to EP water, indicating a decreasing disinfectant residual stability from increasing water age through distribution. Using a simple technique based on published inorganic chloramine chemistry, samples were also investigated for nondisinfectant positive interference (NDPI) on total chlorine measurements. NDPI concentrations represented up to 100% of the total chlorine concentration when total chlorine concentrations decreased to 0.05 mg-Cl2/L, indicating little to no effective disinfectant residual remained.

7.
Water (Basel) ; 13(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34804602

RESUMO

Facing challenges in water demands and population size, particularly in the water-scarce regions in the United States, the reuse of treated municipal wastewater has become a viable potential to relieve the ever-increasing demands of providing water for (non-)potable use. The objectives of this study were to assess microbial quality of reclaimed water and to investigate treatability of microorganisms during different treatment processes. Raw and final treated effluent samples from three participating utilities were collected monthly for 16 months and analyzed for various microbial pathogens and fecal indicator organisms. Results revealed that the detectable levels of microbial pathogens tested were observed in the treated effluent samples from all participating utilities. Log10 reduction values (LRVs) of Cryptosporidium oocysts and Giardia cysts were at least two orders of magnitude lower than those of human adenovirus and all fecal indicator organisms except for aerobic endospores, which showed the lowest LRVs. The relatively higher LRV of the indicator organisms such as bacteriophages suggested that these microorganisms are not good candidates of viral indicators of human adenovirus during wastewater treatment processes. Overall, this study will assist municipalities considering the use of wastewater effluent as another source of drinking water by providing important data on the prevalence, occurrence, and reduction of waterborne pathogens in wastewater. More importantly, the results from this study will aid in building a richer microbial occurrence database that can be used towards evaluating reuse guidelines and disinfection practices for water reuse practices.

8.
Water Res ; 205: 117689, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34607086

RESUMO

Chloramine is a secondary disinfectant used to maintain microbial control throughout public water distribution systems. This study investigated the relationship between chloramine concentration, heterotrophic bacteria, and specific Mycobacterium species. Sixty-four water samples were collected at four locations within the utility's distribution network on four occasions. Water samples were analyzed for total chlorine and monochloramine. Traditional culture methods were applied for heterotrophic bacteria and nontuberculous mycobacteria (NTM), and specific quantitative polymerase chain reaction (qPCR) assays were used to detect and quantify Mycobacterium avium, M. intracellulare, and M. abscessus. Total chlorine and monochloramine concentrations decreased between the distribution entry point (4.7 mg/L and 3.4 mg/L as Cl2, respectively) to the maximum residence time location (1.7 mg/L and 1.1 mg/L as Cl2, respectively). Results showed that heterotrophic bacteria and NTM counts increased by two logs as the water reached the average residence time (ART) location. Microbiological detection frequencies among all samples were: 86% NTMs, 66% heterotrophic bacteria, 64% M. abscessus, 48% M. intracellulare, and 2% M. avium. This study shows that heterotrophic bacteria and NTM are weakly correlated with disinfectant residual concentration, R2=0.18 and R2=0.04, respectively. Considering that specific NTMs have significant human health effects, these data fill a critical knowledge gap regarding chloramine's impact on heterotrophic bacteria and Mycobacterial species survival within public drinking water distribution systems.


Assuntos
Água Potável , Mycobacterium , Cloraminas , Desinfecção , Humanos
9.
Water Res ; 205: 117571, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34628111

RESUMO

Water-based opportunistic pathogens (OPs) are a leading cause of drinking-water-related disease outbreaks, especially in developed countries such as the United States (US). Physicochemical water quality parameters, especially disinfectant residuals, control the (re)growth, presence, colonization, and concentrations of OPs in drinking water distribution systems (DWDSs), while the relationship between OPs and those parameters remain unclear. This study aimed to quantify how physicochemical parameters, mainly monochloramine residual concentration, hydraulic residence time (HRT), and seasonality, affected the occurrence and concentrations of four common OPs (Legionella, Mycobacterium, Pseudomonas, and Vermamoeba vermiformis) in four full-scale DWDSs in the US. Legionella as a dominant OP occurred in 93.8% of the 64 sampling events and had a mean density of 4.27 × 105 genome copies per liter. Legionella positively correlated with Mycobacterium, Pseudomonas, and total bacteria. Multiple regression with data from the four DWDSs showed that Legionella had significant correlations with total chlorine residual level, free ammonia concentration, and trihalomethane concentration. Therefore, Legionella is a promising indicator of water-based OPs, reflecting microbial water quality in chloraminated DWDSs. The OP concentrations had strong seasonal variations and peaked in winter and/or spring possibly because of reduced water usage (i.e., increased water stagnation or HRT) during cold seasons. The OP concentrations generally increased with HRT presumably because of disinfectant residual decay, indicating the importance of well-maintaining disinfectant residuals in DWDSs for OP control. The concentrations of Mycobacterium, Pseudomonas, and V. vermiformis were significantly associated with total chlorine residual concentration, free ammonia concentration, and pH and trihalomethane concentration, respectively. Overall, this study demonstrates how the significant spatiotemporal variations of OP concentrations in chloraminated DWDSs correlated with critical physicochemical water quality parameters such as disinfectant residual levels. This work also indicates that Legionella is a promising indicator of OPs and microbial water quality in chloraminated DWDSs.


Assuntos
Água Potável , Legionella , Mycobacterium , Cloro , Água Potável/análise , Microbiologia da Água
10.
Environ Sci Technol ; 49(10): 6127-33, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25902261

RESUMO

Nontuberculous mycobacteria (NTMs) are environmental microorganisms that can cause infections in humans, primarily in the lung and soft tissue. The prevalence of NTM-associated diseases is increasing in the United States. Exposure to NTMs occurs primarily through human interactions with water (especially aerosolized). Potable water from sites across the U.S. was collected to investigate the presence of NTM. Water from 68 taps was sampled 4 times over the course of 2 years. In total, 272 water samples were examined for NTM using a membrane filtration, culture method. Identification of NTM isolates was accomplished by polymerase chain reaction (PCR) amplification of the 16S rRNA and hsp65 genes. NTMs were detected in 78% of the water samples. The NTM species detected most frequently were: Mycobacterium mucogenicum (52%), Mycobacterium avium (30%), and Mycobacterium gordonae (25%). Of the taps that were repeatedly positive for NTMs, the species M. avium, M. mucogenicum, and Mycobacterium abscessus were found to persist most frequently. This study also observed statistically significant higher levels of NTM in chloraminated water than in chlorinated water.


Assuntos
Água Potável/microbiologia , Infecções por Mycobacterium não Tuberculosas/epidemiologia , Micobactérias não Tuberculosas/isolamento & purificação , Humanos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Infecções por Mycobacterium não Tuberculosas/transmissão , Micobactérias não Tuberculosas/genética , Reação em Cadeia da Polimerase , Prevalência , Estados Unidos/epidemiologia
11.
Environ Sci Technol ; 48(6): 3145-52, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24548208

RESUMO

In the United States, 6,868 cases of legionellosis were reported to the Center for Disease Control and Prevention in 2009-2010. Of these reports, it is estimated that 84% are caused by the microorganism Legionella pneumophila Serogroup (Sg) 1. Legionella spp. have been isolated and recovered from a variety of natural freshwater environments. Human exposure to L. pneumophila Sg1 may occur from aerosolization and subsequent inhalation of household and facility water. In this study, two primer/probe sets (one able to detect L. pneumophila and the other L. pneumophila Sg1) were determined to be highly sensitive and selective for their respective targets. Over 272 water samples, collected in 2009 and 2010 from 68 public and private water taps across the United States, were analyzed using the two qPCR assays to evaluate the incidence of L. pneumophila Sg1. Nearly half of the taps showed the presence of L. pneumophila Sg1 in one sampling event, and 16% of taps were positive in more than one sampling event. This study is the first United States survey to document the occurrence and colonization of L. pneumophila Sg1 in cold water delivered from point of use taps.


Assuntos
Água Potável/microbiologia , Legionella pneumophila/isolamento & purificação , Microbiologia da Água , Abastecimento de Água/análise , Humanos , Legionella pneumophila/classificação , Legionella pneumophila/genética , Legionelose/microbiologia , Estados Unidos
12.
Paediatr Perinat Epidemiol ; 23(4): 321-31, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19523079

RESUMO

Most studies of the relationship between maternal residential proximity to sources of environmental pollution and congenital cardiovascular malformations have combined heart defects into one group or broad subgroups. The current case-control study examined whether risk of conotruncal heart defects, including subsets of specific defects, was associated with maternal residential proximity to hazardous waste sites and industrial facilities with recorded air emissions. Texas Birth Defects Registry cases were linked to their birth or fetal death certificate. Controls without birth defects were randomly selected from birth certificates. Distances from maternal addresses at delivery to National Priority List (NPL) waste sites, state superfund waste sites, and Toxic Release Inventory (TRI) facilities were determined for 1244 cases (89.5% of those eligible) and 4368 controls (88.0%). Living within 1 mile of a hazardous waste site was not associated with risk of conotruncal heart defects [adjusted odds ratio (aOR) = 0.83, 95% confidence interval (CI) = 0.54, 1.27]. This was true whether looking at most types of defects or waste sites. Only truncus arteriosus showed statistically elevated ORs with any waste site (crude OR: 2.80, 95% CI 1.19, 6.54) and with NPL sites (crude OR: 4.63, 95% CI 1.18, 13.15; aOR 4.99, 95% CI 1.26, 14.51), but the latter was based on only four exposed cases. There was minimal association between conotruncal heart defects and proximity to TRI facilities (aOR = 1.10, 95% CI = 0.91, 1.33). Stratification by maternal age or race/ethnic group made little difference in effect estimates for waste sites or industrial facilities. In this study population, maternal residential proximity to waste sites or industries with reported air emissions was not associated with conotruncal heart defects or its subtypes in offspring, with the exception of truncus arteriosus.


Assuntos
Resíduos Perigosos/efeitos adversos , Cardiopatias Congênitas/prevenção & controle , Exposição Materna/prevenção & controle , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Adulto , Estudos de Casos e Controles , Monitoramento Ambiental/normas , Monitoramento Epidemiológico , Feminino , Cardiopatias Congênitas/epidemiologia , Habitação , Humanos , Recém-Nascido , Exposição Materna/efeitos adversos , Razão de Chances , Gravidez , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Fatores de Risco , Fatores Socioeconômicos , Texas/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA