Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Gen Comp Endocrinol ; 343: 114369, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37611673

RESUMO

In starfish, a relaxin-like gonad-stimulating peptide (RGP) acts as a gonadotropin that triggers gamete maturation and spawning. In common with other relaxin/insulin superfamily peptides, RGP consists of an A- and a B-chain, with cross-linkages mediated by one intra- and two inter-chain disulfide bonds. In this study, a second relaxin-like peptide (RLP2) was identified in starfish species belonging to the orders Valvatida, Paxillosida, and Forcipulatida. Like RGP, RLP2 precursors comprise a signal peptide and a C-peptide in addition to the A- and B-chains. However, a unique cysteine motif [CC-(3X)-C-(10X)-C] is present in the A-chain of RLP2, which contrasts with the cysteine motif in other members of the relaxin/insulin superfamily [CC-(3X)-C-(8X)-C]. Importantly, in vitro pharmacological tests revealed that Patiria pectinifera RLP2 (Ppe-RLP2) and Asterias rubens RLP2 (Aru-RLP2) trigger shedding of mature eggs from ovaries of P. pectinifera and A. rubens, respectively. Furthermore, the potencies of Ppe-RLP2 and Aru-RLP2 as gonadotropic peptides were similar to those of Ppe-RGP and Aru-RGP, respectively, and the effect of RLP2 exhibited partial species-specificity. These findings indicate that two relaxin-type peptides regulate spawning in starfish and therefore we propose that RGP and RLP2 are renamed RGP1 and RGP2, respectively.


Assuntos
Asterias , Asterina , Relaxina , Animais , Estrelas-do-Mar , Cisteína , Peptídeo C , Insulina
2.
Biomolecules ; 13(5)2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-37238650

RESUMO

Starfish relaxin-like gonad-stimulating peptide (RGP) is the first identified peptide hormone with gonadotropin-like activity in invertebrates. RGP is a heterodimeric peptide, comprising A and B chains with disulfide cross-linkages. Although RGP had been named a gonad-stimulating substance (GSS), the purified peptide is a member of relaxin-type peptide family. Thus, GSS was renamed as RGP. The cDNA of RGP encodes not only the A and B chains, but also signal and C-peptides. After the rgp gene is translated as a precursor, mature RGP is produced by eliminating the signal and C-peptides. Hitherto, twenty-four RGP orthologs have been identified or predicted from starfish in the orders Valvatida, Forcipulatida, Paxillosida, Spinulosida, and Velatida. The molecular evolution of the RGP family is in good accordance with the phylogenetic taxonomy in Asteroidea. Recently, another relaxin-like peptide with gonadotropin-like activity, RLP2, was found in starfish. RGP is mainly present in the radial nerve cords and circumoral nerve rings, but also in the arm tips, the gonoducts, and the coelomocytes. RGP acts on ovarian follicle cells and testicular interstitial cells to induce the production of 1-methyladenine (1-MeAde), a starfish maturation-inducing hormone. RGP-induced 1-MeAde production is accompanied by an increase in intracellular cyclic AMP levels. This suggests that the receptor for RGP (RGPR) is a G protein-coupled receptor (GPCR). Two types of GPCRs, RGPR1 and RGPR2, have been postulated as candidates. Furthermore, 1-MeAde produced by RGP not only induces oocyte maturation, but also induces gamete shedding, possibly by stimulating the secretion of acetylcholine in the ovaries and testes. Thus, RGP plays an important role in starfish reproduction, but its secretion mechanism is still unknown. It has also been revealed that RGP is found in the peripheral adhesive papillae of the brachiolaria arms. However, gonads are not developed in the larvae before metamorphosis. It may be possible to discover new physiological functions of RGP other than gonadotropin-like activity.


Assuntos
Relaxina , Animais , Feminino , Relaxina/química , Filogenia , Gônadas , Estrelas-do-Mar , Gonadotropinas
3.
J Comp Neurol ; 531(13): 1299-1316, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37212624

RESUMO

Oocyte maturation and gamete release (spawning) in starfish are triggered by relaxin-like gonad-stimulating peptide (RGP), a neuropeptide that was first isolated from the radial nerve cords of these animals. Hitherto, it has generally been assumed that the radial nerve cords are the source of RGP that triggers spawning physiologically. To investigate other sources of RGP, here we report the first comprehensive anatomical analysis of its expression, using both in situ hybridization and immunohistochemistry to map RGP precursor transcripts and RGP, respectively, in the starfish Asterias rubens. Cells expressing RGP precursor transcripts were revealed in the ectoneural epithelium of the radial nerve cords and circumoral nerve ring, arm tips, tube feet, cardiac stomach, pyloric stomach, and, most notably, gonoducts. Using specific antibodies to A. rubens RGP, immunostaining was revealed in cells and/or fibers in the ectoneural region of the radial nerve cords and circumoral nerve ring, tube feet, terminal tentacle and other arm tip-associated structures, body wall, peristomial membrane, esophagus, cardiac stomach, pyloric stomach, pyloric caeca, and gonoducts. Our discovery that RGP is expressed in the gonoducts of A. rubens proximal to its gonadotropic site of action in the gonads is important because it provides a new perspective on how RGP may act as a gonadotropin in starfish. Thus, we hypothesize that it is the release of RGP from the gonoducts that triggers gamete maturation and spawning in starfish, while RGP produced in other parts of the body may regulate other physiological/behavioral processes.


Assuntos
Asterias , Neuropeptídeos , Relaxina , Animais , Estrelas-do-Mar/metabolismo , Relaxina/química , Relaxina/metabolismo , Gônadas/metabolismo , Asterias/metabolismo , Neuropeptídeos/metabolismo
4.
Zoolog Sci ; 40(1): 7-12, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36744704

RESUMO

Relaxin-like gonad-stimulating peptide (RGP) is a hormone with gonadotropin-like activity in starfish. This study revealed that spawning inducing activity was detected in an extract of brachiolaria larvae of Patiria pectinifera. Spawning inducing activity in the extract was due to P. pectinifera RGP (PpeRGP), not 1-methyladenine. The expression of PpeRGP mRNA was also found in brachiolaria. Immunohistochemical observation with specific antibodies for PpeRGP showed that PpeRGP was distributed in the peripheral adhesive papilla of the brachiolaria arms. In contrast, PpeRGP was not detected in the adult rudiment or ciliary band regions, which are present in the neural system. These findings strongly suggest that RGP exists in the larvae before metamorphosis. Because gonads are not developed in starfish larvae, it seems likely that RGP plays another role other than gonadotropic action in the early development of starfish.


Assuntos
Asterina , Relaxina , Animais , Estrelas-do-Mar/metabolismo , Relaxina/metabolismo , Gônadas , Asterina/metabolismo , Metamorfose Biológica , Larva/metabolismo
5.
Gen Comp Endocrinol ; 334: 114226, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36731602

RESUMO

A relaxin-like gonad-stimulating peptide (RGP) in starfish was the first identified invertebrate gonadotropin, consisting of A- and B-chain. Recently, an RGP ortholog (Asc-RGP) from Astropecten scoparius in the order Paxillosida was found to harbor an amidation signal (Gly-Arg) at the C-terminus of the B-chain (Mita et al., 2020a). Two cleavage sites were also predicted within the signal peptide of the Asc-RGP precursor. Thus, four kinds of analogs (Asc-RGP-NH2(S), Asc-RGP-GR(S), Asc-RGP- NH2(L), Asc-RGP-GR(L) were hypothesized as natural Asc-RGPs. To identify the natural Asc-RGP, an extract of radial nerve cords from A. scoparius was analyzed using reverse-phase high-performance liquid chromatography and MALDI-TOF-mass spectrometry. The molecular weight of Asc-RGP was 4585.3, and those of A- and B-chains were 2511.8 and 2079.8, respectively. This strongly suggests that natural RGP in A. scoparius is Asc-RGP-NH2(S). Asc-RGP-NH2(S) stimulated 1-methyladenine and cyclic AMP production in isolated ovarian follicle cells of A. scoparius. On the other hand, the concentrations of four synthetic Asc-RGP analogs required for the induction of spawning in 50% of ovarian fragments were almost the same. The size and C-terminal amidation of the B-chain might not be important for spawning-inducing activity. C-terminally amidated RGPs in the B-chain were also observed in other species of starfish belonging to the order Paxillosida, particularly the family Astropectinidae, but not the family Luidiidae.


Assuntos
Hormônios de Invertebrado , Relaxina , Animais , Feminino , Gônadas , Relaxina/química , Estrelas-do-Mar/fisiologia
6.
Gen Comp Endocrinol ; 328: 114107, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35973586

RESUMO

In starfish, a relaxin-like gonad-stimulating peptide (RGP) is the gonadotropin responsible for final gamete maturation. RGP comprises two different peptides, A- and B-chains with two interchain and one intrachain disulfide bonds. The existence of two isomers of RGP in the crown-of-thorns starfish, Acanthaster planci, has been reported previously, but it was recently shown that A. planci represents a species complex with four different species. Here we elucidated the authentic sequence of the Pacific species, Acanthaster cf. solaris, RGP (Aso-RGP). The Aso-RGP precursor encoded by a 354 base pair open reading frame was composed of 117 amino acids (aa). The amino acid identity of Aso-RGP to Patiria pectinifera RGP (Ppe-RGP) and Asterias amurensis RGP (Aam-RGP) was 74% and 60%, respectively. Synthetic Aso-RGP induced spawning of ovarian fragments from A. cf. solaris. Ppe-RGP and Aam-RGP also induced spawning by A. cf. solaris ovaries. In contrast, Ppe-RGP and Aso-RGP induced spawning by P. pectinifera ovaries, but Aam-RGP was inactive. Notably, anti-Ppe-RGP antibodies recognized Aso-RGP as well as Ppe-RGP. Localization of Aso-RGP was observed immunohistochemically using anti-Ppe-RGP antibodies, showing that Aso-RGP was mainly present in the radial nerve cords of A. cf. solaris. Aso-RGP was distributed not only in the epithelium of the ectoneural region but also in the neuropile of the ectoneural region. These results suggest that Aso-RGP is synthesized in the epithelium of the ectoneural region, then transferred to fibers in the neuropile of the ectoneural region in radial nerve cords.


Assuntos
Relaxina , Aminoácidos , Animais , Dissulfetos/metabolismo , Gonadotropinas/metabolismo , Gônadas/metabolismo , Relaxina/metabolismo , Estrelas-do-Mar/metabolismo
7.
Gen Comp Endocrinol ; 310: 113831, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34089706

RESUMO

A relaxin-like gonad-stimulating peptide (RGP) acts as a gonadotropic hormone in starfish. In this study, antibodies to Asterias rubens RGP (AruRGP) were used for the development of a specific and sensitive enzyme-linked immunosorbent assay (ELISA) to measure AruRGP. Biotin-conjugated RGP (biotin-AruRGP) that binds to peroxidase-conjugated streptavidin was synthesized chemically so that it could be specifically detected using 3, 3', 5, 5'-tetramethylbenzidine (TMB)/hydrogen peroxide as a substrate. Similar to AruRGP, biotin-AruRGP bound to AruRGP antibodies. In binding experiments with biotin-AruRGP using wells coated with AruRGP antibodies, a displacement curve was obtained using serial dilutions of AruRGP. Using this ELISA system, AruRGP could be measured in the range 0.01-5.0 pmol per 50 µl test solution. Furthermore, 0.22 ± 0.03 and 0.20 ± 0.04 pmol AruRGP/mg wet weight tissue were detected in the radial nerve cords and circumoral nerve-rings of A. rubens, respectively. Smaller amounts of AruRGP were detected in tube feet, pyloric stomach and cardiac stomach but AruRGP was not detected in pyloric caeca, ovaries and testes. Analysis of the specificity of the AruRGP antibodies revealed that the A- and B-chains of AruRGP, Patiria pectinifera RGP, Aphelasterias japonica RGP, and human relaxin exhibit little or no cross-reactivity in the ELISA. We conclude, therefore, that we have successfully generated an ELISA system that is highly sensitive and specific for detection of AruRGP.


Assuntos
Asterias , Ensaio de Imunoadsorção Enzimática , Hormônios de Invertebrado , Relaxina , Animais , Asterias/metabolismo , Gônadas/metabolismo , Hormônios de Invertebrado/metabolismo , Relaxina/metabolismo
8.
Mol Reprod Dev ; 88(1): 34-42, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33244845

RESUMO

A relaxin-like gonad-stimulating peptide (RGP) in starfish was the first identified invertebrate gonadotropin responsible for final gamete maturation. An RGP ortholog was newly identified from Astropecten scoparius of the order Paxillosida. The A. scoparius RGP (AscRGP) precursor is encoded by a 354 base pair open reading frame and is a 118 amino acid (aa) protein consisting of a signal peptide (26 aa), B-chain (21 aa), C-peptide (47 aa), and A-chain (24 aa). There are three putative processing sites (Lys-Arg) between the B-chain and C-peptide, between the C-peptide and A-chain, and within the C-peptide. This structural organization revealed that the mature AscRGP is composed of A- and B-chains with two interchain disulfide bonds and one intrachain disulfide bond. The C-terminal residues of the B-chain are Gln-Gly-Arg, which is a potential substrate for formation of an amidated C-terminal Gln residue. Non-amidated (AscRGP-GR) and amidated (AscRGP-NH2 ) peptides were chemically synthesized and their effect on gamete shedding activity was examined using A. scoparius ovaries. Both AscRGP-GR and AscRGP-NH2 induced oocyte maturation and ovulation in similar dose-dependent manners. This is the first report on a C-terminally amidated functional RGP. Collectively, these results suggest that AscRGP-GR and AscRGP-NH2 act as a natural gonadotropic hormone in A. scoparius.


Assuntos
Gonadotropinas/química , Gonadotropinas/metabolismo , Hormônios de Invertebrado/química , Hormônios de Invertebrado/metabolismo , Neuropeptídeos/química , Neuropeptídeos/metabolismo , Oócitos/metabolismo , Ovário/metabolismo , Estrelas-do-Mar/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Células Cultivadas , Feminino , Gonadotropinas/síntese química , Gonadotropinas/farmacologia , Hormônios de Invertebrado/síntese química , Hormônios de Invertebrado/farmacologia , Neuropeptídeos/síntese química , Neuropeptídeos/farmacologia , Oócitos/efeitos dos fármacos , Oogênese/efeitos dos fármacos , Ovário/efeitos dos fármacos , Ovulação/efeitos dos fármacos , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nervo Radial/metabolismo , Estrelas-do-Mar/efeitos dos fármacos , Estrelas-do-Mar/genética
9.
PLoS One ; 15(11): e0242877, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33226996

RESUMO

Gonadotropic hormones play important regulatory roles in reproduction. Relaxin-like gonad-stimulating peptide (RGP) is a gonadotropin-like hormone in starfish. However, a receptor for RGP remains to be identified. Here, we describe the identification of an authentic receptor for RGP (RGPR) in the starfish, Patiria pectinifera. A binding assay using radioiodinated P. pectinifera RGP (PpeRGP) revealed that RGPR was expressed in ovarian follicle cells. A RGPR candidate was identified by homology-searching of transcriptome data of P. pectinifera follicle cells. Based on the contig sequences, a putative 947-amino acid PpeRGPR was cloned from follicle cells. Like the vertebrate relaxin family peptide receptors (RXFP 1 and 2), PpeRGPR was a G protein-coupled receptor that harbored a low-density lipoprotein-receptor class A motif and leucine-rich repeat sequences in the extracellular domain of the N-terminal region. Sf9 cells transfected with Gαq16-fused PpeRGPR activated calcium ion mobilization in response to PpeRGP, but not to RGP of another starfish Asterias amurensis, in a dose-dependent fashion. These results confirmed the species-specific reactivity of RGP and the cognate receptor. Thus, the present study provides evidence that PpeRGPR is a specific receptor for PpeRGP. To the best of our knowledge, this is the first report on the identification of a receptor for echinoderm RGP.


Assuntos
Gonadotropinas/genética , Hormônios de Invertebrado/metabolismo , Peptídeos/metabolismo , Estrelas-do-Mar/fisiologia , Animais , Feminino , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Gônadas/crescimento & desenvolvimento , Gônadas/metabolismo , Hormônios de Invertebrado/isolamento & purificação , Peptídeos/isolamento & purificação , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Relaxina/genética , Reprodução/genética , Reprodução/fisiologia , Estrelas-do-Mar/genética
10.
Biol Open ; 9(4)2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32265199

RESUMO

The teleost fish, medaka (Oryzias latipes), employs the XX/XY genetic sex determination system. We show here that the phenotypic sex of medaka is affected by changes in lipid metabolism. Medaka larvae subjected to 5 days of starvation underwent female-to-male sex reversal. Metabolomic and RT-qPCR analyses indicated that pantothenate metabolism was suppressed by starvation. Consistently, inhibiting the pantothenate metabolic pathway caused sex reversal. The final metabolite in this pathway is coenzyme A, an essential factor for lipogenesis. Inhibiting fatty acid synthesis, the first step of lipogenesis, also caused sex reversal. The expression of dmrt1, a critical gene for male development, was suppressed by starvation, and a dmrt1 (Δ13) mutant did not show sex reversal under starvation. Collectively, these results indicate that fatty acid synthesis is involved in female-to-male sex reversal through ectopic expression of male gene dmrt1 under starvation.


Assuntos
Metabolismo dos Lipídeos , Oryzias/fisiologia , Processos de Determinação Sexual/fisiologia , Inanição , Animais , Feminino , Masculino , Redes e Vias Metabólicas , Fenótipo
11.
Gen Comp Endocrinol ; 290: 113401, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31981689

RESUMO

Starfish are suitable animals for the study of hormonal regulatory mechanism of oocyte maturation and ovulation. Although contraction of the gonadal walls is essential for the shedding gametes, little was known about the mechanism. When ovaries of starfish Patiria pectinifera were incubated in Ca2+-free seawater in the presence of 1-methyladenine (1-MeAde), the germinal vesicles in oocytes broke down, but no ovulation occurred. Verapamil, a potent inhibitor of voltage-dependent Ca2+ channels, inhibited 1-MeAde-induced ovulation. These results suggest that extracellular Ca2+ and its influx are indispensable for gamete shedding. Furthermore, acetylcholine (ACh) was involved in extracellular Ca2+-dependent contractions of gonadal walls. Although 1-MeAde failed to induce contraction of the gonadal walls in normal seawater containing L-glutamic acid, application of ACh or carbachol, an agonist for ACh receptor, could bring about shedding of mature oocytes. Atropine, a competitive antagonist of the muscarinic ACh receptor, inhibited 1-MeAde-induced ovulation, but a nicotinic ACh receptor antagonist mecamylamine had no effect. Furthermore, ACh was detected in the ovaries and testes in P. pectinifera. These findings suggest that ACh acts on muscarinic ACh receptors in gonadal walls to induce peristaltic contractions caused by Ca2+ influx via Ca2+ channels in the gonadal wall muscle for gamete shedding. The present study also provides new insight into the regulatory mechanism that 1-MeAde acts on secretion of ACh in ovaries and testes.


Assuntos
Acetilcolina/metabolismo , Cálcio/metabolismo , Células Germinativas/metabolismo , Gônadas/metabolismo , Ovário/efeitos dos fármacos , Estrelas-do-Mar , Animais , Feminino , Masculino
12.
Gen Comp Endocrinol ; 287: 113351, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31805285

RESUMO

A relaxin-like gonad-stimulating peptide (RGP), comprising two peptide chains (A- and B-chains) linked by two interchain bonds and one intrachain disulfide bond, acts as a gonadotropin in starfish. RGP orthologs have been identified in several starfish species, including Patiria pectinifera (PpeRGP), Asterias rubens (AruRGP) and Aphelasterias japonica (AjaRGP). To analyze species-specificity, this study examined the effects on oocyte maturation and ovulation in ovaries of A. rubens and A. japonica of nine RGP derivatives comprising different combinations of A- and B-chains from the three species. All nine RGP derivatives induced spawning in A. rubens and A. japonica ovaries. However, AruRGP, AjaRGP and their chimeric derivatives were more potent than peptides containing the A- or B-chain of PpeRGP. Three-dimensional models of the structures of the RGP derivatives revealed that residues in the B-chains, such as AspB6, MetB10 and PheB13 in PpeRGP and GluB7, MetB11, and TyrB14 in AruRGP and AjaRGP, respectively, are likely to be involved in receptor binding. Conversely, it is likely that ArgA18 in the A-chain of AruRGP and AjaRGP impairs binding of these peptides to the PpeRGP receptor in P. pectinifera. In conclusion, this study provides new insights into the structural basis of RGP bioactivity and RGP receptor activation in starfish.


Assuntos
Asterias/fisiologia , Hormônios de Invertebrado/farmacologia , Neuropeptídeos/farmacologia , Oogênese/efeitos dos fármacos , Ovulação/efeitos dos fármacos , Hormônios Peptídicos/farmacologia , Animais , Asterias/efeitos dos fármacos , Feminino , Hormônios de Invertebrado/química , Neuropeptídeos/química , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Ovário/efeitos dos fármacos , Ovário/metabolismo , Hormônios Peptídicos/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacologia , Relaxina/química , Estrelas-do-Mar/efeitos dos fármacos , Estrelas-do-Mar/fisiologia
13.
Biosci Biotechnol Biochem ; 83(10): 1791-1799, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31112075

RESUMO

To produce the antiserum against a small peptide, the target peptide-keyhole limpet hemocyanine (KLH) conjugate is generally used as an antigen, although the disulfide-rich peptide-KLH conjugate is still difficult to prepare. In our previous study, we have developed a preparation method of the disulfide-rich peptide-KLH conjugate, and this method was applied to produce the antiserum against a relaxin-like peptide. However, this method is limited to the synthetic peptide antigen, and is not applicable to a native or a recombinant peptide. In this study, to expand the applicability of this method to wide variety of peptides, we newly designed a novel thiol probe enabling the conjugation between various peptides and KLH, and applied it to produce the antiserum against relaxin-like peptide of a starfish Asterias amurensis. The antiserum obtained here showed high antibody-titer and good specificity, strongly suggesting that the method developed in this study is applicable to various peptides.


Assuntos
Formação de Anticorpos/efeitos dos fármacos , Dissulfetos/análise , Hemocianinas/química , Peptídeos/química , Sequência de Aminoácidos , Animais , Hemocianinas/farmacologia , Soros Imunes , Peptídeos/farmacologia , Relaxina/química , Estrelas-do-Mar
14.
Artigo em Inglês | MEDLINE | ID: mdl-30967842

RESUMO

The first report of a gonadotropic substance in an invertebrate hot-water extract of radial nerve cords from starfish Asterias forbesi that induced the shedding of gametes when injected into the coelomic cavity in a ripe individual occurred in 1959. The active substance was named gamete-shedding substance (GSS) or radial nerve factor. GSS is the primary mediator of oocyte maturation and ovulation in starfish. However, the effect of GSS is indirect. Resumption of meiosis in immature oocytes and release from the ovary are induced by a second mediator, maturation-inducing hormone, identified as 1-methyladenine (1-MeAde) in starfish. The role of GSS is to induce 1-MeAde production by ovarian follicle cells. Thus, GSS was redesignated as gonad-stimulating substance (also GSS). Although GSS has been characterized biochemically as a peptide hormone, identification of the chemical structure had to wait until 2009. Fifty years after the initial finding, GSS was purified from the radial nerve cords of starfish Patiria pectinifera (P. pectinifera). The purified hormone was a heterodimer composed of A- and B-chains, with disulfide cross-linkages. Based on its cysteine motif, GSS is classified as a member of the insulin/insulin-like growth factor (IGF)/relaxin superfamily. More specifically, phylogenetic sequence analysis revealed that P. pectinifera GSS is a member of the relaxin-type peptide family. Therefore, GSS in starfish has been redesignated as relaxin-like gonad-stimulating peptide (RGP). Subsequently, orthologs of P. pectinifera RGP have been identified in other starfish species, including Asterias amurensis (A. amurensis), and Aphelasterias japonica (A. japonica).

15.
Gen Comp Endocrinol ; 276: 30-36, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30796897

RESUMO

A relaxin-like gonad-stimulating peptide (RGP) of starfish Patiria (Asterina) pectinifera is the first identified invertebrate gonadotropin for final gamete maturation. Recently, we found three orthologs of RGP in the class Asteroida; PpeRGP in P. pectinifera, AamRGP in Asterias amurensis, and AjaRGP in Aphelasterias japonica. In this study, nine kinds of RGP derivatives with exchanged each A- and B-chain were synthesized chemically to analyze the interaction of RGP with its receptor. Among these RGP derivatives, PpeRGP and its chimeric RGPs with B-chains from AamRGP or AjaRGP could induce oocyte maturation and ovulation in P. pectinifera ovaries. In contrast, other RGP derivatives were failed to induce spawning in P. pectinifera ovaries. Circular dichroism spectra of PpeRGP were similar to those of chimeric RGPs with the B-chains from AamRGP or AjaRGP. Furthermore, the predicted three-dimensional structure models of the B-chains from RGP derivatives have almost the same conformation. These findings suggest that the B-chain of PpeRGP is involved in binding to its receptor. Thus, it is likely that the A-chain of AamRGP or AjaRGP disturbs the binding of the PpeRGP B-chain to its receptor.


Assuntos
Asterina/metabolismo , Gonadotropinas/metabolismo , Gônadas/metabolismo , Receptores da Gonadotropina/metabolismo , Relaxina/farmacologia , Sequência de Aminoácidos , Animais , Asterina/efeitos dos fármacos , Feminino , Técnicas de Maturação in Vitro de Oócitos , Modelos Moleculares , Ovulação/efeitos dos fármacos , Relaxina/química
16.
Artigo em Inglês | MEDLINE | ID: mdl-30374327

RESUMO

Neurotransmitters serve as chemical mediators of cell communication, and are known to have important roles in regulating numerous physiological and metabolic events in eumetazoans. The Crown-of-Thorns Seastar (COTS) is an asteroid echinoderm that has been the focus of numerous ecological studies due to its negative impact on coral reefs when in large numbers. Research devoted to its neural signaling, from basic anatomy to the key small neurotransmitters, would expand our current understanding of neural-driven biological processes, such as growth and reproduction, and offers a new approach to exploring the propensity for COTS population explosions and subsequent collapse. In this study we investigated the metabolomic profiles of small molecule neurotransmitters in the COTS radial nerve cord. Multivariate analysis shows differential abundance of small molecule neurotransmitters in male and female COTS, and in food-deprived individuals with significant differences between sexes in gamma-aminobutyric acid (GABA), histamine and serotonin, and significant differences in histamine and serotonin between satiation states. Annotation established that the majority of biosynthesis enzyme genes are present in the COTS genome. The spatial distribution of GABA, histamine and serotonin in the radial nerve cord was subsequently confirmed by immunolocalization; serotonin is most prominent within the ectoneural regions, including unique neural bulbs, while GABA and histamine localize primarily within neuropil fibers. Glutamic acid, which was also found in high relative abundance and is a precursor of GABA, is known as a spawning inhibitor in seastars, and as such was tested for inhibition of ovulation ex-vivo which resulted in complete inhibition of oocyte maturation and ovulation induced by 1-Methyladenine. These findings not only advance our knowledge of echinoderm neural signaling processes but also identify potential targets for developing novel approaches for COTS biocontrol.

17.
Gen Comp Endocrinol ; 258: 157-162, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28859971

RESUMO

A relaxin-like gonad-stimulating peptide (RGP) from starfish Patiria (Asterina) pectinifera is the first identified invertebrate gonadotropin for final gamete maturation. Recently, we succeeded in obtaining specific antibodies against P. pectinifera RGP (PpeRGP). In this study, the antibodies were used for the development of a specific and sensitive enzyme-linked immunosorbent assay (ELISA) for the measurement of PpeRGP. A biotin-conjugated peptide that binds to peroxidase-conjugated streptavidin is specifically detectable using 3,3',5,5'-tetramethylbenzidine (TMB)/hydrogen peroxide as a substrate; therefore, biotin-conjugated RGP (biotin-PpeRGP) was synthesized chemically. Similarly to PpeRGP, synthetic biotin-PpeRGP bound to the antibody against PpeRGP. In binding experiments with biotin-PpeRGP using wells coated with the antibody, a displacement curve was obtained using serial concentrations of PpeRGP. The ELISA system showed that PpeRGP could be measured in the range 0.01-10pmol per 50µl assay buffer. On the contrary, the B-chains of PpeRGP, Asterias amurensis RGP, Aphelasterias japonica RGP, and human relaxin showed minimal cross-reactivity in the ELISA, except that the A-chain of PpeRGP affected it slightly. These results strongly suggest that this ELISA system is highly specific and sensitive with respect to PpeRGP.


Assuntos
Asterina/metabolismo , Gonadotropinas/análise , Hormônios de Invertebrado/análise , Relaxina/análogos & derivados , Relaxina/análise , Animais , Anticorpos/metabolismo , Asterina/crescimento & desenvolvimento , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/veterinária , Gonadotropinas/química , Gonadotropinas/metabolismo , Gônadas/metabolismo , Humanos , Hormônios de Invertebrado/metabolismo , Neuropeptídeos/análise , Neuropeptídeos/metabolismo , Relaxina/metabolismo , Estrelas-do-Mar/crescimento & desenvolvimento , Estrelas-do-Mar/metabolismo
18.
Gen Comp Endocrinol ; 243: 84-88, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27838378

RESUMO

A relaxin-like gonad-stimulating peptide (RGP) from starfish Patiria (=Asterina) pectinifera is the first identified invertebrate gonadotropin for final gamete maturation. An antiserum against P. pectinifera RGP (PpeRGP) was produced by immunizing rabbits with a PpeRGP sulfanyl-polyethylene glycol derivative conjugated with keyhole limpet hemocyanin (KLH) as the antigen. The antiserum was used for the development of a specific and sensitive radioimmunoassay (RIA) for the measurement of RGP. In binding experiments using radioiodinated PpeRGP and antiserum against PpeRGP, a displacement curve was obtained using radioinert PpeRGP. The sensitivity of the RIA, defined as the amount of PpeRGP that significantly decreased the counts by 2 SD from the 100% bound point, averaged 0.040±0.002pmol PpeRGP per 100µl assay buffer (0.40±0.02nM) in 10 assays. Intra-assay and inter-assay coefficients of variation were 6.1% and 2.7%, respectively. Serial dilution of whole homogenates from the radial nerve cords and circumoral nerve-rings of P. pectinifera produced displacement curves parallel to the PpeRGP standard. Thus, the amounts of PpeRGP were determined as 1.54±0.09pmol/mg wet weight of radial nerves and 0.87±0.04pmol/mg wet weight of nerve-rings, respectively. On contrary, pyloric stomach, pyloric caeca, tube-feet, ovaries, testes, and ovarian follicle cells did not react in the RIA system. Furthermore, the A- and B-chains of PpeRGP, Asterias amurensis RGP, bovine insulin, and human relaxin did not show cross-reactivity in the RIA. These results strongly suggest that the RIA system is a highly specific and sensitive with respect to PpeRGP.


Assuntos
Asterina/metabolismo , Gônadas/metabolismo , Hormônios de Invertebrado/metabolismo , Fragmentos de Peptídeos/metabolismo , Radioimunoensaio/métodos , Relaxina/metabolismo , Animais , Asterina/crescimento & desenvolvimento
19.
J Comp Neurol ; 525(7): 1599-1617, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27806429

RESUMO

Gamete maturation and spawning in starfish is triggered by a gonad-stimulating substance (GSS), which is present in extracts of the radial nerve cords. Purification of GSS from the starfish Patiria pectinifera identified GSS as a relaxin-like polypeptide, which is now known as relaxin-like gonad-stimulating peptide (RGP). Cells expressing RGP in the radial nerve cord of P. pectinifera have been visualized, but the presence of RGP-expressing cells in other parts of the starfish body has not been investigated. Here we addressed this issue in the starfish Asterias rubens. An A. rubens RGP (AruRGP) precursor cDNA was sequenced and the A chain and B chain that form AruRGP were detected in A. rubens radial nerve cord extracts using mass spectrometry. Comparison of the bioactivity of AruRGP and P. pectinifera RGP (PpeRGP) revealed that both polypeptides induce oocyte maturation and ovulation in A. rubens ovarian fragments, but AruRGP is more potent than PpeRGP. Analysis of the expression of AruRGP in A. rubens using mRNA in situ hybridization revealed cells expressing RGP in the radial nerve cords, circumoral nerve ring, and tube feet. Furthermore, a band of RGP-expressing cells was identified in the body wall epithelium lining the cavity that surrounds the sensory terminal tentacle and optic cushion at the tips of the arms. Discovery of these RGP-expressing cells closely associated with sensory organs in the arm tips is an important finding because these cells are candidate physiological mediators for hormonal control of starfish spawning in response to environmental cues. J. Comp. Neurol. 525:1599-1617, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Hormônios de Invertebrado/metabolismo , Relaxina/metabolismo , Comportamento Sexual Animal/fisiologia , Estrelas-do-Mar/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Hibridização In Situ , Espectrometria de Massas , Peptídeos/metabolismo , Filogenia , Reação em Cadeia da Polimerase
20.
Mol Reprod Dev ; 84(3): 246-256, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28004452

RESUMO

l-Glutamic acid was previously identified as an inhibitor of spawning in the starfish Patiria (Asterina) pectinifera; this study examined how l-glutamic acid works. Oocyte release from ovaries of P. pectinifera occurred after germinal vesicle breakdown (GVBD) and follicular envelope breakdown (FEBD) when gonads were incubated ex vivo with either relaxin-like gonad-stimulating peptide (RGP) or 1-methyladenine (1-MeAde). l-Glutamic acid blocked this spawning phenotype, causing the mature oocytes to remain within the ovaries. Neither RGP-induced 1-MeAde production in ovarian follicle cells nor 1-MeAde-induced GVBD and FEBD was affected by l-glutamic acid. l-Glutamic acid may act through metabotropic receptors in the ovaries to inhibit spawning, as l-(+)-2-amino-4-phosphonobutyric acid, an agonist for metabotropic glutamate receptors, also inhibited spawning induced by 1-MeAde. Application of acetylcholine (ACH) to ovaries under inhibitory conditions with l-glutamic acid, however, brought about spawning, possibly by inducing contraction of the ovarian wall to discharge mature oocytes from the ovaries concurrently with GVBD and FEBD. Thus, l-glutamic acid may inhibit ACH secretion from gonadal nerve cells in the ovary. Mol. Reprod. Dev. 84: 246-256, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Asterina/metabolismo , Ácido Glutâmico/farmacologia , Oócitos/metabolismo , Ovário/metabolismo , Receptores de Glutamato/metabolismo , Acetilcolina/farmacologia , Animais , Feminino , Oócitos/citologia , Ovário/citologia , Ovário/inervação , Reprodução/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA