Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nat Commun ; 15(1): 5861, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997274

RESUMO

Electrical stimulation is a key tool in neuroscience, both in brain mapping studies and in many therapeutic applications such as cochlear, vestibular, and retinal neural implants. Due to safety considerations, stimulation is restricted to short biphasic pulses. Despite decades of research and development, neural implants lead to varying restoration of function in patients. In this study, we use computational modeling to provide an explanation for how pulsatile stimulation affects axonal channels and therefore leads to variability in restoration of neural responses. The phenomenological explanation is transformed into equations that predict induced firing rate as a function of pulse rate, pulse amplitude, and spontaneous firing rate. We show that these equations predict simulated responses to pulsatile stimulation with a variety of parameters as well as several features of experimentally recorded primate vestibular afferent responses to pulsatile stimulation. We then discuss the implications of these effects for improving clinical stimulation paradigms and electrical stimulation-based experiments.


Assuntos
Estimulação Elétrica , Animais , Estimulação Elétrica/métodos , Modelos Neurológicos , Macaca mulatta , Potenciais de Ação/fisiologia , Neurônios/fisiologia , Simulação por Computador , Humanos , Vestíbulo do Labirinto/fisiologia
2.
J Neurosci ; 43(11): 1905-1919, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36732070

RESUMO

Noninvasive electrical stimulation of the vestibular system in humans has become an increasingly popular tool with a broad range of research and clinical applications. However, common assumptions regarding the neural mechanisms that underlie the activation of central vestibular pathways through such stimulation, known as galvanic vestibular stimulation (GVS), have not been directly tested. Here, we show that GVS is encoded by VIIIth nerve vestibular afferents with nonlinear dynamics that differ markedly from those predicted by current models. GVS produced asymmetric activation of both semicircular canal and otolith afferents to the onset versus offset and cathode versus anode of applied current, that in turn produced asymmetric eye movement responses in three awake-behaving male monkeys. Additionally, using computational methods, we demonstrate that the experimentally observed nonlinear neural response dynamics lead to an unexpected directional bias in the net population response when the information from both vestibular nerves is centrally integrated. Together our findings reveal the neural basis by which GVS activates the vestibular system, establish that neural response dynamics differ markedly from current predictions, and advance our mechanistic understanding of how asymmetric activation of the peripheral vestibular system alters vestibular function. We suggest that such nonlinear encoding is a general feature of neural processing that will be common across different noninvasive electrical stimulation approaches.SIGNIFICANCE STATEMENT Here, we show that the application of noninvasive electrical currents to the vestibular system (GVS) induces more complex responses than commonly assumed. We recorded vestibular afferent activity in macaque monkeys exposed to GVS using a setup analogous to human studies. GVS evoked notable asymmetries in irregular afferent responses to cathodal versus anodal currents. We developed a nonlinear model explaining these GVS-evoked afferent responses. Our model predicts that GVS induces directional biases in centrally integrated head motion signals and establishes electrical stimuli that recreate physiologically plausible sensations of motion. Altogether, our findings provide new insights into how GVS activates the vestibular system, which will be vital to advancing new clinical and biomedical applications.


Assuntos
Movimentos Oculares , Vestíbulo do Labirinto , Animais , Masculino , Humanos , Vestíbulo do Labirinto/fisiologia , Canais Semicirculares/fisiologia , Primatas , Sensação , Estimulação Elétrica/métodos
3.
Proc Natl Acad Sci U S A ; 120(2): e2208963120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36595706

RESUMO

Layer 5 (L5) pyramidal neurons receive predictive and sensory inputs in a compartmentalized manner at their apical and basal dendrites, respectively. To uncover how integration of sensory inputs is affected in autism spectrum disorders (ASD), we used two-photon glutamate uncaging to activate spines in the basal dendrites of L5 pyramidal neurons from a mouse model of Fragile X syndrome (FXS), the most common genetic cause of ASD. While subthreshold excitatory inputs integrate linearly in wild-type animals, surprisingly those with FXS summate sublinearly, contradicting what would be expected of sensory hypersensitivity classically associated with ASD. We next investigated the mechanism underlying this sublinearity by performing knockdown of the regulatory ß4 subunit of BK channels, which rescued the synaptic integration, a result that was corroborated with numerical simulations. Taken together, these findings suggest that there is a differential impairment in the integration of feedforward sensory and feedback predictive inputs in L5 pyramidal neurons in FXS and potentially other forms of ASD, as a result of specifically localized subcellular channelopathies. These results challenge the traditional view that FXS and other ASD are characterized by sensory hypersensitivity, proposing instead a hyposensitivity of sensory inputs and hypersensitivity of predictive inputs onto cortical neurons.


Assuntos
Síndrome do Cromossomo X Frágil , Camundongos , Animais , Canais de Potássio Ativados por Cálcio de Condutância Alta , Células Piramidais/fisiologia , Dendritos/fisiologia , Neurônios
4.
J Physiol ; 600(9): 2165-2187, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35194785

RESUMO

Dendritic spines are the main receptacles of excitatory information in the brain. Their particular morphology, with a small head connected to the dendrite by a slender neck, has inspired theoretical and experimental work to understand how these structural features affect the processing, storage and integration of synaptic inputs in pyramidal neurons (PNs). The activation of glutamate receptors in spines triggers a large voltage change as well as calcium signals at the spine head. Thus, voltage-gated and calcium-activated potassium channels located in the spine head likely play a key role in synaptic transmission. Here we study the presence and function of large conductance calcium-activated potassium (BK) channels in spines from layer 5 PNs. We found that BK channels are localized to dendrites and spines regardless of their size, but their activity can only be detected in spines with small head volumes (≤0.09 µm3 ), which reduces the amplitude of two-photon uncaging excitatory postsynaptic potentials recorded at the soma. In addition, we found that calcium signals in spines with small head volumes are significantly larger than those observed in spines with larger head volumes. In accordance with our experimental data, numerical simulations predict that synaptic inputs impinging onto spines with small head volumes generate voltage responses and calcium signals within the spine head itself that are significantly larger than those observed in spines with larger head volumes, which are sufficient to activate spine BK channels. These results show that BK channels are selectively activated in small-headed spines, suggesting a new level of dendritic spine-mediated regulation of synaptic processing, integration and plasticity in cortical PNs. KEY POINTS: BK channels are expressed in the visual cortex and layer 5 pyramidal neuron somata, dendrites and spines regardless of their size. BK channels are selectively activated in small-headed spines (≤0.09 µm3 ), which reduces the amplitude of two-photon (2P) uncaging excitatory postsynaptic potentials (EPSPs) recorded at the soma. Two-photon imaging revealed that intracellular calcium responses in the head of 2P-activated spines are significantly larger in small-headed spines (≤0.09 µm3 ) than in spines with larger head volumes. In accordance with our experimental data, numerical simulations showed that synaptic inputs impinging onto spines with small head volumes (≤0.09 µm3 ) generate voltage responses and calcium signals within the spine head itself that are significantly larger than those observed in spines with larger head volumes, sufficient to activate spine BK channels and suppress EPSPs.


Assuntos
Espinhas Dendríticas , Canais de Potássio Ativados por Cálcio de Condutância Alta , Cálcio/metabolismo , Dendritos/fisiologia , Espinhas Dendríticas/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Células Piramidais/fisiologia
5.
Nat Commun ; 11(1): 4276, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32848151

RESUMO

The structural organization of excitatory inputs supporting spike-timing-dependent plasticity (STDP) remains unknown. We performed a spine STDP protocol using two-photon (2P) glutamate uncaging (pre) paired with postsynaptic spikes (post) in layer 5 pyramidal neurons from juvenile mice. Here we report that pre-post pairings that trigger timing-dependent LTP (t-LTP) produce shrinkage of the activated spine neck and increase in synaptic strength; and post-pre pairings that trigger timing-dependent LTD (t-LTD) decrease synaptic strength without affecting spine shape. Furthermore, the induction of t-LTP with 2P glutamate uncaging in clustered spines (<5 µm apart) enhances LTP through a NMDA receptor-mediated spine calcium accumulation and actin polymerization-dependent neck shrinkage, whereas t-LTD was dependent on NMDA receptors and disrupted by the activation of clustered spines but recovered when separated by >40 µm. These results indicate that synaptic cooperativity disrupts t-LTD and extends the temporal window for the induction of t-LTP, leading to STDP only encompassing LTP.


Assuntos
Espinhas Dendríticas/fisiologia , Plasticidade Neuronal/fisiologia , Potenciais de Ação/fisiologia , Animais , Sinalização do Cálcio/fisiologia , Técnicas In Vitro , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência por Excitação Multifotônica , Modelos Neurológicos , Células Piramidais/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia
6.
J Neurosci ; 40(9): 1874-1887, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-31959700

RESUMO

The vestibulocollic reflex is a compensatory response that stabilizes the head in space. During everyday activities, this stabilizing response is evoked by head movements that typically span frequencies from 0 to 30 Hz. Transient head impacts, however, can elicit head movements with frequency content up to 300-400 Hz, raising the question whether vestibular pathways contribute to head stabilization at such high frequencies. Here, we first established that electrical vestibular stimulation modulates human neck motor unit (MU) activity at sinusoidal frequencies up to 300 Hz, but that sensitivity increases with frequency up to a low-pass cutoff of ∼70-80 Hz. To examine the neural substrates underlying the low-pass dynamics of vestibulocollic reflexes, we then recorded vestibular afferent responses to the same electrical stimuli in monkeys. Vestibular afferents also responded to electrical stimuli up to 300 Hz, but in contrast to MUs their sensitivity increased with frequency up to the afferent resting firing rate (∼100-150 Hz) and at higher frequencies afferents tended to phase-lock to the vestibular stimulus. This latter nonlinearity, however, was not transmitted to neck motoneurons, which instead showed minimal phase-locking that decreased at frequencies >75 Hz. Similar to human data, we validated that monkey muscle activity also exhibited low-pass filtered vestibulocollic reflex dynamics. Together, our results show that neck MUs are activated by high-frequency signals encoded by primary vestibular afferents, but undergo low-pass filtering at intermediate stages in the vestibulocollic reflex. These high-frequency contributions to vestibular-evoked neck muscle responses could stabilize the head during unexpected head transients.SIGNIFICANCE STATEMENT Vestibular-evoked neck muscle responses rely on accurate encoding and transmission of head movement information to stabilize the head in space. Unexpected transient events, such as head impacts, are likely to push the limits of these neural pathways since their high-frequency features (0-300 Hz) extend beyond the frequency bandwidth of head movements experienced during everyday activities (0-30 Hz). Here, we demonstrate that vestibular primary afferents encode high-frequency stimuli through frequency-dependent increases in sensitivity and phase-locking. When transmitted to neck motoneurons, these signals undergo low-pass filtering that limits neck motoneuron phase-locking in response to stimuli >75 Hz. This study provides insight into the neural dynamics producing vestibulocollic reflexes, which may respond to high-frequency transient events to stabilize the head.


Assuntos
Reflexo Vestíbulo-Ocular/fisiologia , Adulto , Vias Aferentes/fisiologia , Animais , Estimulação Elétrica , Eletromiografia , Fenômenos Eletrofisiológicos/fisiologia , Movimentos da Cabeça/fisiologia , Humanos , Macaca fascicularis , Masculino , Neurônios Motores/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculos do Pescoço/inervação , Músculos do Pescoço/fisiologia , Vias Neurais/fisiologia , Adulto Jovem
7.
Artigo em Inglês | MEDLINE | ID: mdl-31354469

RESUMO

The development of two-photon microscopy has revolutionized our understanding of how synapses are formed and how they transform synaptic inputs in dendritic spines-tiny protrusions that cover the dendrites of pyramidal neurons that receive most excitatory synaptic information in the brain. These discoveries have led us to better comprehend the neuronal computations that take place at the level of dendritic spines as well as within neuronal circuits with unprecedented resolution. Here, we describe a method that uses a two-photon (2P) microscope and 2P uncaging of caged neurotransmitters for the activation of single and multiple spines in the dendrites of cortical pyramidal neurons. In addition, we propose a cost-effective description of the components necessary for the construction of a one laser source-2P microscope capable of nearly simultaneous 2P uncaging of neurotransmitters and 2P calcium imaging of the activated spines and nearby dendrites. We provide a brief overview on how the use of these techniques have helped researchers in the last 15 years unravel the function of spines in: (a) information processing; (b) storage; and (c) integration of excitatory synaptic inputs.

8.
Nat Commun ; 10(1): 1904, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015434

RESUMO

Galvanic vestibular stimulation (GVS) uses the external application of electrical current to selectively target the vestibular system in humans. Despite its recent popularity for the assessment/treatment of clinical conditions, exactly how this non-invasive tool activates the vestibular system remains an open question. Here we directly investigate single vestibular afferent responses to GVS applied to the mastoid processes of awake-behaving monkeys. Transmastoid GVS produces robust and parallel activation of both canal and otolith afferents. Notably, afferent activation increases with intrinsic neuronal variability resulting in constant GVS-evoked neuronal detection thresholds across all afferents. Additionally, afferent tuning differs for GVS versus natural self-motion stimulation. Using a stochastic model of repetitive activity in afferents, we largely explain the main features of GVS-evoked vestibular afferent dynamics. Taken together, our results reveal the neural substrate underlying transmastoid GVS-evoked perceptual, ocular and postural responses-information that is essential to advance GVS applicability for biomedical uses in humans.


Assuntos
Potenciais de Ação/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Movimentos Oculares/fisiologia , Postura/fisiologia , Nervo Vestibular/fisiologia , Vestíbulo do Labirinto/fisiologia , Vias Aferentes/fisiologia , Animais , Comportamento Animal/fisiologia , Eletrodos Implantados , Macaca fascicularis , Masculino , Modelos Neurológicos , Técnicas Estereotáxicas , Processos Estocásticos , Estimulação Transcraniana por Corrente Contínua , Vestíbulo do Labirinto/inervação
9.
Elife ; 72018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30561328

RESUMO

It is commonly assumed that the brain's neural coding strategies are adapted to the statistics of natural stimuli. Specifically, to maximize information transmission, a sensory neuron's tuning function should effectively oppose the decaying stimulus spectral power, such that the neural response is temporally decorrelated (i.e. 'whitened'). However, theory predicts that the structure of neuronal variability also plays an essential role in determining how coding is optimized. Here, we provide experimental evidence supporting this view by recording from neurons in early vestibular pathways during naturalistic self-motion. We found that central vestibular neurons displayed temporally whitened responses that could not be explained by their tuning alone. Rather, computational modeling and analysis revealed that neuronal variability and tuning were matched to effectively complement natural stimulus statistics, thereby achieving temporal decorrelation and optimizing information transmission. Taken together, our findings reveal a novel strategy by which neural variability contributes to optimized processing of naturalistic stimuli.


Assuntos
Movimentos da Cabeça/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Primatas/fisiologia , Vestíbulo do Labirinto/fisiologia , Algoritmos , Animais , Macaca fascicularis/fisiologia , Macaca mulatta/fisiologia , Masculino , Modelos Neurológicos , Movimento (Física) , Vestíbulo do Labirinto/citologia
10.
Sci Rep ; 7(1): 853, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28405011

RESUMO

Investigations of behaviors with well-characterized circuitry are required to understand how the brain learns new motor skills and ensures existing behaviors remain appropriately calibrated over time. Accordingly, here we recorded from neurons within different sites of the vestibulo-spinal circuitry of behaving macaque monkeys during temporally precise activation of vestibular afferents. Behaviorally relevant patterns of vestibular nerve activation generated a rapid and substantial decrease in the monosynaptic responses recorded at the first central stage of processing from neurons receiving direct input from vestibular afferents within minutes, as well as a decrease in the compensatory reflex response that lasted up to 8 hours. In contrast, afferent responses to this same stimulation remained constant, indicating that plasticity was not induced at the level of the periphery but rather at the afferent-central neuron synapse. Strikingly, the responses of neurons within indirect brainstem pathways also remained constant, even though the efficacy of their central input was significantly reduced. Taken together, our results show that rapid plasticity at the first central stage of vestibulo-spinal pathways can guide changes in motor performance, and that complementary plasticity on the same millisecond time scale within inhibitory vestibular nuclei networks contributes to ensuring a relatively robust behavioral output.


Assuntos
Plasticidade Neuronal , Potenciais Evocados Miogênicos Vestibulares , Nervo Vestibular/fisiologia , Animais , Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Macaca mulatta , Masculino , Inibição Neural , Neurônios/fisiologia , Neurônios Aferentes/fisiologia , Reflexo , Medula Espinal/citologia , Medula Espinal/fisiologia , Nervo Vestibular/citologia
11.
Nat Commun ; 7: 11238, 2016 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-27157829

RESUMO

Although cerebellar mechanisms are vital to maintain accuracy during complex movements and to calibrate simple reflexes, recent in vitro studies have called into question the widely held view that synaptic changes within cerebellar pathways exclusively guide alterations in motor performance. Here we investigate the vestibulo-ocular reflex (VOR) circuitry by applying temporally precise activation of vestibular afferents in awake-behaving monkeys to link plasticity at different neural sites with changes in motor performance. Behaviourally relevant activation patterns produce rapid attenuation of direct pathway VOR neurons, but not their nerve input. Changes in the strength of this pathway are sufficient to induce a lasting decrease in the evoked VOR. In addition, indirect brainstem pathways display complementary nearly instantaneous changes, contributing to compensating for the reduced sensitivity of primary VOR neurons. Taken together, our data provide evidence that multiple sites of plasticity within VOR pathways can rapidly shape motor performance in vivo.


Assuntos
Neurônios Motores/fisiologia , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia , Reflexo Vestíbulo-Ocular/fisiologia , Potenciais de Ação/fisiologia , Algoritmos , Animais , Estimulação Elétrica , Eletrodos Implantados , Movimentos Oculares/fisiologia , Macaca mulatta , Masculino , Modelos Neurológicos , Vigília/fisiologia
12.
J Assoc Res Otolaryngol ; 16(3): 373-87, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25790951

RESUMO

Bilateral vestibular deficiency (BVD) due to gentamicin ototoxicity can significantly impact quality of life and result in large socioeconomic burdens. Restoring sensation of head rotation using an implantable multichannel vestibular prosthesis (MVP) is a promising treatment approach that has been tested in animals and humans. However, uncertainty remains regarding the histopathologic effects of gentamicin ototoxicity alone or in combination with electrode implantation. Understanding these histological changes is important because selective MVP-driven stimulation of semicircular canals (SCCs) depends on persistence of primary afferent innervation in each SCC crista despite both the primary cause of BVD (e.g., ototoxic injury) and surgical trauma associated with MVP implantation. Retraction of primary afferents out of the cristae and back toward Scarpa's ganglion would render spatially selective stimulation difficult to achieve and could limit utility of an MVP that relies on electrodes implanted in the lumen of each ampulla. We investigated histopathologic changes of the inner ear associated with intratympanic gentamicin (ITG) injection and/or MVP electrode array implantation in 11 temporal bones from six rhesus macaque monkeys. Hematoxylin and eosin-stained 10-µm temporal bone sections were examined under light microscopy for four treatment groups: normal (three ears), ITG-only (two ears), MVP-only (two ears), and ITG + MVP (four ears). We estimated vestibular hair cell (HC) surface densities for each sensory neuroepithelium and compared findings across end organs and treatment groups. In ITG-only, MVP-only, and ITG + MVP ears, we observed decreased but persistent ampullary nerve fibers of SCC cristae despite ITG treatment and/or MVP electrode implantation. ITG-only and ITG + MVP ears exhibited neuroepithelial thinning and loss of type I HCs in the cristae but little effect on the maculae. MVP-only and ITG + MVP ears exhibited no signs of trauma to the cochlea or otolith end organs except in a single case of saccular injury due to over-insertion of the posterior SCC electrode. While implanted electrodes reached to within 50-760 µm of the target cristae and were usually ensheathed in a thin fibrotic capsule, dense fibrotic reaction and osteoneogenesis were each observed in only one of six electrode tracts examined. Consistent with physiologic studies that have demonstrated directionally appropriate vestibulo-ocular reflex responses to MVP electrical stimulation years after implantation in these animals, histologic findings in the present study indicate that although intralabyrinthine MVP implantation causes some inner ear trauma, it can be accomplished without destroying the distal afferent fibers an MVP is designed to excite.


Assuntos
Antibacterianos/toxicidade , Gentamicinas/toxicidade , Próteses Neurais , Implantação de Prótese , Canais Semicirculares/efeitos dos fármacos , Animais , Estimulação Elétrica , Eletrodos Implantados , Injeções , Macaca mulatta , Canais Semicirculares/inervação , Canais Semicirculares/patologia , Doenças Vestibulares/terapia
13.
J Physiol ; 592(7): 1565-80, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24366259

RESUMO

The vestibular system is responsible for processing self-motion, allowing normal subjects to discriminate the direction of rotational movements as slow as 1-2 deg s(-1). After unilateral vestibular injury patients' direction-discrimination thresholds worsen to ∼20 deg s(-1), and despite some improvement thresholds remain substantially elevated following compensation. To date, however, the underlying neural mechanisms of this recovery have not been addressed. Here, we recorded from first-order central neurons in the macaque monkey that provide vestibular information to higher brain areas for self-motion perception. Immediately following unilateral labyrinthectomy, neuronal detection thresholds increased by more than two-fold (from 14 to 30 deg s(-1)). While thresholds showed slight improvement by week 3 (25 deg s(-1)), they never recovered to control values - a trend mirroring the time course of perceptual thresholds in patients. We further discovered that changes in neuronal response variability paralleled changes in sensitivity for vestibular stimulation during compensation, thereby causing detection thresholds to remain elevated over time. However, we found that in a subset of neurons, the emergence of neck proprioceptive responses combined with residual vestibular modulation during head-on-body motion led to better neuronal detection thresholds. Taken together, our results emphasize that increases in response variability to vestibular inputs ultimately constrain neural thresholds and provide evidence that sensory substitution with extravestibular (i.e. proprioceptive) inputs at the first central stage of vestibular processing is a neural substrate for improvements in self-motion perception following vestibular loss. Thus, our results provide a neural correlate for the patient benefits provided by rehabilitative strategies that take advantage of the convergence of these multisensory cues.


Assuntos
Percepção de Movimento , Neurônios , Propriocepção , Limiar Sensorial , Doenças Vestibulares/fisiopatologia , Vestíbulo do Labirinto/fisiopatologia , Potenciais de Ação , Animais , Sinais (Psicologia) , Modelos Animais de Doenças , Movimentos da Cabeça , Macaca mulatta , Neurônios/patologia , Recuperação de Função Fisiológica , Fatores de Tempo , Doenças Vestibulares/patologia , Doenças Vestibulares/psicologia , Vestíbulo do Labirinto/patologia
14.
PLoS One ; 8(10): e78767, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24147142

RESUMO

The vestibular system detects motion of the head in space and in turn generates reflexes that are vital for our daily activities. The eye movements produced by the vestibulo-ocular reflex (VOR) play an essential role in stabilizing the visual axis (gaze), while vestibulo-spinal reflexes ensure the maintenance of head and body posture. The neuronal pathways from the vestibular periphery to the cervical spinal cord potentially serve a dual role, since they function to stabilize the head relative to inertial space and could thus contribute to gaze (eye-in-head + head-in-space) and posture stabilization. To date, however, the functional significance of vestibular-neck pathways in alert primates remains a matter of debate. Here we used a vestibular prosthesis to 1) quantify vestibularly-driven head movements in primates, and 2) assess whether these evoked head movements make a significant contribution to gaze as well as postural stabilization. We stimulated electrodes implanted in the horizontal semicircular canal of alert rhesus monkeys, and measured the head and eye movements evoked during a 100 ms time period for which the contribution of longer latency voluntary inputs to the neck would be minimal. Our results show that prosthetic stimulation evoked significant head movements with latencies consistent with known vestibulo-spinal pathways. Furthermore, while the evoked head movements were substantially smaller than the coincidently evoked eye movements, they made a significant contribution to gaze stabilization, complementing the VOR to ensure that the appropriate gaze response is achieved. We speculate that analogous compensatory head movements will be evoked when implanted prosthetic devices are transitioned to human patients.


Assuntos
Movimentos Oculares/fisiologia , Movimentos da Cabeça/fisiologia , Postura/fisiologia , Animais , Macaca mulatta , Reflexo Vestíbulo-Ocular/fisiologia
15.
J Neurosci ; 30(32): 10905-17, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20702719

RESUMO

The ability to accurately control movement requires the computation of a precise motor command. However, the computations that take place within premotor pathways to determine the dynamics of movements are not understood. Here we studied the local processing that generates dynamic motor commands by simultaneously recording spikes and local field potentials (LFPs) in the network that commands saccades. We first compared the information encoded by LFPs and spikes recorded from individual premotor and motoneurons (saccadic burst neurons, omnipause neurons, and motoneurons) in monkeys. LFP responses consistent with net depolarizations occurred in association with bursts of spiking activity when saccades were made in a neuron's preferred direction. In contrast, when saccades were made in a neuron's nonpreferred direction, neurons ceased spiking and the associated LFP responses were consistent with net hyperpolarizations. Surprisingly, hyperpolarizing and depolarizing LFPs encoded movement dynamics with equal robustness and accuracy. Second, we compared spiking responses at one hierarchical level of processing to LFPs at the next stage. Latencies and spike-triggered averages of LFP responses were consistent with each neuron's place within this circuit. LFPs reflected relatively local events (<500 microm) and encoded important features not available from the spiking train (i.e., hyperpolarizing response). Notably, quantification of their time-varying profiles revealed that a precise balance of depolarization and hyperpolarization underlies the production of precise saccadic eye movement commands at both motor and premotor levels. Overall, simultaneous recordings of LFPs and spiking responses provides an effective means for evaluating the local computations that take place to produce accurate motor commands.


Assuntos
Vias Aferentes/fisiologia , Córtex Motor/citologia , Neurônios Motores/fisiologia , Movimento/fisiologia , Rede Nervosa/fisiologia , Dinâmica não Linear , Potenciais de Ação/fisiologia , Animais , Potenciais Evocados/fisiologia , Macaca mulatta , Modelos Neurológicos , Estimulação Luminosa/métodos , Tempo de Reação , Movimentos Sacádicos/fisiologia , Percepção Espacial/fisiologia
16.
Exp Brain Res ; 195(1): 45-57, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19283371

RESUMO

The integration of neck proprioceptive and vestibular inputs underlies the generation of accurate postural and motor control. Recent studies have shown that central mechanisms underlying the integration of these sensory inputs differ across species. Notably, in rhesus monkey (Macaca mulata), an Old World monkey, neurons in the vestibular nuclei are insensitive to passive stimulation of neck proprioceptors. In contrast, in squirrel monkey, a New World monkey, stimulation produces robust modulation. This has led to the suggestion that there are differences in how sensory information is integrated during self-motion in Old versus New World monkeys. To test this hypothesis, we recorded from neurons in the vestibular nuclei of another species in the Macaca genus [i.e., M. fascicularis (cynomolgus monkey)]. Recordings were made from vestibular-only (VO) and position-vestibular-pause (PVP) neurons. The majority (53%) of neurons in both groups were sensitive to neck proprioceptive and vestibular stimulation during passive body-under-head and whole-body rotation, respectively. Furthermore, responses during passive rotations of the head-on-body were well predicted by the linear summation of vestibular and neck responses (which were typically antagonistic). During active head movement, the responses of VO and PVP neurons were further attenuated (relative to a model based on linear summation) for the duration of the active head movement or gaze shift, respectively. Taken together, our findings show that the brain's strategy for the central processing of sensory information can vary even within a single genus. We suggest that similar divergence may be observed in other areas in which multimodal integration occurs.


Assuntos
Macaca fascicularis/fisiologia , Pescoço/inervação , Neurônios/fisiologia , Propriocepção/fisiologia , Núcleos Vestibulares/citologia , Potenciais de Ação/fisiologia , Animais , Comportamento Animal , Movimentos da Cabeça/fisiologia , Modelos Neurológicos , Neurônios/citologia , Estimulação Luminosa , Rotação , Movimentos Sacádicos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA