Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 26(9): 5178-5188, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32662196

RESUMO

Tree planting is increasingly being proposed as a strategy to combat climate change through carbon (C) sequestration in tree biomass. However, total ecosystem C storage that includes soil organic C (SOC) must be considered to determine whether planting trees for climate change mitigation results in increased C storage. We show that planting two native tree species (Betula pubescens and Pinus sylvestris), of widespread Eurasian distribution, onto heather (Calluna vulgaris) moorland with podzolic and peaty podzolic soils in Scotland, did not lead to an increase in net ecosystem C stock 12 or 39 years after planting. Plots with trees had greater soil respiration and lower SOC in organic soil horizons than heather control plots. The decline in SOC cancelled out the increment in C stocks in tree biomass on decadal timescales. At all four experimental sites sampled, there was no net gain in ecosystem C stocks 12-39 years after afforestation-indeed we found a net ecosystem C loss in one of four sites with deciduous B. pubescens stands; no net gain in ecosystem C at three sites planted with B. pubescens; and no net gain at additional stands of P. sylvestris. We hypothesize that altered mycorrhizal communities and autotrophic C inputs have led to positive 'priming' of soil organic matter, resulting in SOC loss, constraining the benefits of tree planting for ecosystem C sequestration. The results are of direct relevance to current policies, which promote tree planting on the assumption that this will increase net ecosystem C storage and contribute to climate change mitigation. Ecosystem-level biogeochemistry and C fluxes must be better quantified and understood before we can be assured that large-scale tree planting in regions with considerable pre-existing SOC stocks will have the intended policy and climate change mitigation outcomes.


Assuntos
Sequestro de Carbono , Árvores , Carbono/análise , Ecossistema , Escócia , Solo
2.
New Phytol ; 228(1): 226-237, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32432343

RESUMO

Soil carbon (C) pools and plant community composition are regulated by nitrogen (N) and phosphorus (P) availability. Atmospheric N deposition impacts ecosystem C storage, but the direction of response varies between systems. Phosphorus limitation may constrain C storage response to N, hence P application to increase plant productivity and thus C sequestration has been suggested. We revisited a 23-yr-old field experiment where N and P had been applied to upland heath, a widespread habitat supporting large soil C stocks. At 10 yr after the last nutrient application we quantified long-term changes in vegetation composition and in soil and vegetation C and P stocks. Nitrogen addition, particularly when combined with P, strongly influenced vegetation composition, favouring grasses over Calluna vulgaris, and led to a reduction in vegetation C stocks. However, soil C stocks did not respond to nutrient treatments. We found 40% of the added P had accumulated in the soil. This study showed persistent effects of N and N + P on vegetation composition, whereas effects of P alone were small and showed recovery. We found no indication that P application could mitigate the effects of N on vegetation or increase C sequestration in this system.


Assuntos
Nitrogênio , Fósforo , Carbono , Ecossistema , Nitrogênio/análise , Solo
3.
Environ Pollut ; 247: 319-331, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30685673

RESUMO

Nitrogen (N) deposition poses a severe risk to global terrestrial ecosystems, and managing this threat is an important focus for air pollution science and policy. To understand and manage the impacts of N deposition, we need metrics which accurately reflect N deposition pressure on the environment, and are responsive to changes in both N deposition and its impacts over time. In the UK, the metric typically used is a measure of total N deposition over 1-3 years, despite evidence that N accumulates in many ecosystems and impacts from low-level exposure can take considerable time to develop. Improvements in N deposition modelling now allow the development of metrics which incorporate the long-term history of pollution, as well as current exposure. Here we test the potential of alternative N deposition metrics to explain vegetation compositional variability in British semi-natural habitats. We assembled 36 individual datasets representing 48,332 occurrence records in 5479 quadrats from 1683 sites, and used redundancy analyses to test the explanatory power of 33 alternative N metrics based on national pollutant deposition models. We find convincing evidence for N deposition impacts across datasets and habitats, even when accounting for other large-scale drivers of vegetation change. Metrics that incorporate long-term N deposition trajectories consistently explain greater compositional variance than 1-3 year N deposition. There is considerable variability in results across habitats and between similar metrics, but overall we propose that a thirty-year moving window of cumulative deposition is optimal to represent impacts on plant communities for application in science, policy and management.


Assuntos
Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental/métodos , Nitrogênio/análise , Poluição do Ar/análise , Ecologia , Ecossistema , Monitoramento Ambiental/normas , Plantas
4.
Sci Total Environ ; 660: 429-442, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30640111

RESUMO

Globally, peatlands provide an important sink of carbon in their near natural state but potentially act as a source of gaseous and dissolved carbon emission if not in good condition. There is a pressing need to remotely identify peatland sites requiring improvement and to monitor progress following restoration. A medium resolution model was developed based on a training dataset of peatland habitat condition and environmental covariates, such as morphological features, against information derived from the Moderate Resolution Imaging Spectroradiometer (MODIS), covering Scotland (UK). The initial, unrestricted, model provided the probability of a site being in favourable condition. Receiver operator characteristics (ROC) curves for restricted training data, limited to those located on a peat soil map, resulted in an accuracy of 0.915. The kappa statistic was 0.8151, suggesting good model fit. The derived map of predicted peatland condition at the suggested 0.56 threshold was corroborated by data from other sources, including known restoration sites, areas under known non-peatland land cover and previous vegetation survey data mapped onto inferred condition categories. The resulting locations of the areas of peatland modelled to be in favourable ecological condition were largely confined to the North and West of the country, which not only coincides with prior land use intensity but with published predictions of future retraction of the bioclimatic space for peatlands. The model is limited by a lack of spatially appropriate ground observations, and a lack of verification of peat depth at training site locations, hence future efforts to remotely assess peatland condition will require more appropriate ground-based monitoring. If appropriate ground-based observations could be collected, using remote sensing could be considered a cost-efficient means to provide data on changes in peatland habitat condition.


Assuntos
Monitoramento Ambiental/métodos , Imagens de Satélites , Áreas Alagadas , Modelos Biológicos , Escócia , Solo
5.
New Phytol ; 218(2): 470-478, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29397029

RESUMO

In alpine ecosystems, nitrogen (N) deposition has been linked to plant community composition change, including loss of bryophytes and increase of graminoids. Since bryophyte growth is stimulated by increased N availability, it has been hypothesized that loss of bryophyte cover is driven by enhanced decomposition. As bryophyte mats are a significant carbon (C) store, their loss may impact C storage in these ecosystems. We used an N deposition gradient across 15 sites in the UK to examine effects of N deposition on bryophyte litter quality, decomposition and C and N stocks in Racomitrium moss-sedge heath. Increasing N deposition reduced C : N in bryophyte litter, which in turn enhanced decomposition. Soil N stocks increased significantly in response to increased N deposition, and soil C : N declined. However, depletion of the bryophyte mat and its replacement by graminoids under high N deposition was not associated with a change in total ecosystem C stocks. We conclude that decomposition processes in Racomitrium heath are very sensitive to N deposition and provide a mechanism by which N deposition drives depletion of the bryophyte mat. Nitrogen deposition did not measurably alter C stocks, but changes in soil N stocks and C : N suggest the ecosystem is becoming N saturated.


Assuntos
Briófitas/metabolismo , Carbono/metabolismo , Nitrogênio/metabolismo , Biomassa , Geografia , Modelos Lineares , Folhas de Planta/fisiologia , Reino Unido
6.
Environ Pollut ; 235: 956-964, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29358149

RESUMO

The predicted long lag time between a decrease in atmospheric deposition and a measured response in vegetation has generally excluded the investigation of vegetation recovery from the impacts of atmospheric deposition. However, policy-makers require such evidence to assess whether policy decisions to reduce emissions will have a positive impact on habitats. Here we have shown that 40 years after the peak of SOx emissions, decreases in SOx are related to significant changes in species richness and cover in Scottish Calcareous, Mestrophic, Nardus and Wet grasslands. Using a survey of vegetation plots across Scotland, first carried out between 1958 and 1987 and resurveyed between 2012 and 2014, we test whether temporal changes in species richness and cover of bryophytes, Cyperaceae, forbs, Poaceae, and Juncaceae can be explained by changes in sulphur and nitrogen deposition, climate and/or grazing intensity, and whether these patterns differ between six grassland habitats: Acid, Calcareous, Lolium, Nardus, Mesotrophic and Wet grasslands. The results indicate that Calcareous, Mesotrophic, Nardus and Wet grasslands in Scotland are starting to recover from the UK peak of SOx deposition in the 1970's. A decline in the cover of grasses, an increase in cover of bryophytes and forbs and the development of a more diverse sward (a reversal of the impacts of increased SOx) was related to decreased SOx deposition. However there was no evidence of a recovery from SOx deposition in the Acid or Lolium grasslands. Despite a decline in NOx deposition between the two surveys we found no evidence of a reversal of the impacts of increased N deposition. The climate also changed significantly between the two surveys, becoming warmer and wetter. This change in climate was related to significant changes in both the cover and species richness of bryophytes, Cyperaceae, forbs, Poaceae and Juncaceae but the changes differed between habitats.


Assuntos
Biodiversidade , Mudança Climática , Pradaria , Plantas/classificação , Enxofre/farmacologia , Briófitas , Ecossistema , Nitrogênio/análise , Poaceae/classificação , Poaceae/crescimento & desenvolvimento , Escócia , Enxofre/análise
7.
Oecologia ; 182(3): 913-24, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27423890

RESUMO

Nitrogen (N) deposition and climate are acknowledged drivers of change in biodiversity and ecosystem function at large scales. However, at a local scale, their impact on functions and community structure of organisms is filtered by drivers like habitat quality and food quality/availability. This study assesses the relative impact of large-scale factors, N deposition and climate (rainfall and temperature), versus local-scale factors of habitat quality and food quality/availability on soil fauna communities at 15 alpine moss-sedge heaths along an N deposition gradient in the UK. Habitat quality and food quality/availability were the primary drivers of microarthropod communities. No direct impacts of N deposition on the microarthropod community were observed, but induced changes in habitat quality (decline in moss cover and depth) and food quality (decreased vegetation C:N) associated with increased N deposition strongly suggest an indirect impact of N. Habitat quality and climate explained variation in the composition of the Oribatida, Mesostigmata, and Collembola communities, while only habitat quality significantly impacted the Prostigmata. Food quality and prey availability were important in explaining the composition of the oribatid and mesostigmatid mite communities, respectively. This study shows that, in alpine habitats, soil microarthropod community structure responds most strongly to local-scale variation in habitat quality and food availability rather than large-scale variation in climate and pollution. However, given the strong links between N deposition and the key habitat quality parameters, we conclude that N deposition indirectly drives changes in the soil microarthropod community, suggesting a mechanism by which large-scale drivers indirectly impacts these functionally important groups.


Assuntos
Ecossistema , Solo , Animais , Artrópodes , Biodiversidade , Briófitas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA