Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biofactors ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096306

RESUMO

Groundwater arsenic is a notorious toxicant and exposure to environmentally relevant concentrations persists as a healthcare burden across the world. Arsenic has been reported to jeopardize the normal functioning of the immune system, but there are still gaps in the understanding of thymic T cell biology. Immunotoxic influence of arsenic in thymic integrity demands a potent restorative molecule. The objectives of this study were to examine key signaling cross-talks associated with arsenic-induced immune alterations in the thymus and propose melatonin as a potential candidate against immunological complications arising from arsenic exposure. Swiss albino mice were exposed to sodium arsenite (0.05 mg/L; in drinking water) and melatonin (IP:10 mg/kg BW) for 28 days. Melatonin successfully protected thymus from arsenic-mediated tissue degeneration and maintained immune homeostasis including T cell maturation and proliferation by mitigating oxidative stress through Nrf2 upregulation. Additionally, melatonin exerted ameliorative effect against arsenic-induced apoptosis and inflammation by inhibiting p53-mediated mitochondrial cell death pathway and NF-κB-p65/STAT3-mediated proinflammatory pathway, respectively. For the first time, we showed that arsenic-induced profibrotic changes were inhibited by melatonin through targeting of inflammation-associated EMT. Our findings clearly demonstrate that melatonin can be a viable and promising candidate in combating arsenic-induced immune toxicity with no collateral damage, making it an important research target.

2.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167313, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38901652

RESUMO

BACKGROUND: Chronic pancreatic dysfunction is frequently observed as a consequence of prolonged high-fat diet consumption and is a serious public health concern. This pro-diabetic insult aggravates inflammation-influenced fibrotic lesions and is associated with deregulated autophagy. Metformin, a conventional anti-hyperglycemic drug, might be beneficial for pancreatic health, but the complex molecular regulations are not clarified. Considering the worldwide prevalence of chronic pancreatic dysfunction in obese individuals, we aimed to unwind the molecular intricacies explaining the involvement of oxidative stress, inflammation and fibrosis and to approbate metformin as a plausible intervention in this crossroad. MAIN METHODS: Age-matched Swiss Albino mice were exposed to high-fat diet (60 kcal%) against control diet (10 kcal%) to establish diet-induced stress model. Metformin treatment was introduced after 4 weeks to metformin-control and HFD-exposed metformin groups. After 8 weeks, metabolic and molecular outcomes were assessed to establish the impact of metformin on chronic consequences of HFD-mediated injury. KEY FINDINGS: High-fat diet administration to healthy mice primes oxidative stress-mediated chronic inflammation through Nrf2/Keap1/NF-κB interplay. Besides, pro-inflammatory cytokine bias leading to fibrotic (increased TGF-ß, α-SMA, and MMP9) and pro-EMT (Twist1, Slug, Vimentin, E-cadherin) repercussions in pancreatic lobules were evident. Metformin distinctly rescues high-fat diet-induced remodeling of pancreatic pro-diabetic alterations and cellular survival/death switch. Further, metformin abrogates the p62-Twist1 crosstalk in an autophagy-dependent manner (elevated beclin1, LC3-II/I, Lamp2) to restore pancreatic homeostasis. CONCLUSION: Our research validates the therapeutic potential of metformin in the inflammation-fibrosis nexus to ameliorate high-fat diet-induced pancreatic dysfunction and related metabolic alterations.


Assuntos
Autofagia , Dieta Hiperlipídica , Fibrose , Metformina , Estresse Oxidativo , Animais , Metformina/farmacologia , Dieta Hiperlipídica/efeitos adversos , Autofagia/efeitos dos fármacos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Masculino , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Inflamação/patologia , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Pâncreas/patologia , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA