Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Cent Sci ; 6(12): 2326-2338, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33376794

RESUMO

Nanostructured LiMnO2 integrated with Li3PO4 was successfully synthesized by the mechanical milling route and examined as a new series of positive electrode materials for rechargeable lithium batteries. Although uniform mixing at the atomic scale between LiMnO2 and Li3PO4 was not anticipated because of the noncompatibility of crystal structures for both phases, our study reveals that phosphorus ions with excess lithium ions dissolve into nanosize crystalline LiMnO2 as first evidenced by elemental mapping using STEM-EELS combined with total X-ray scattering, solid-state NMR spectroscopy, and a theoretical ab initio study. The integrated phase features a low-crystallinity metastable phase with a unique nanostructure; the phosphorus ion located at the tetrahedral site shares faces with adjacent lithium ions at slightly distorted octahedral sites. This phase delivers a large reversible capacity of ∼320 mA h g-1 as a high-energy positive electrode material in Li cells. The large reversible capacity originated from the contribution from the anionic redox of oxygen coupled with the cationic redox of Mn ions, as evidenced by operando soft XAS spectroscopy, and the superior reversibility of the anionic redox and the suppression of oxygen loss were also found by online electrochemical mass spectroscopy. The improved reversibility of the anionic redox originates from the presence of phosphorus ions associated with the suppression of oxygen dimerization, as supported by a theoretical study. From these results, the mechanistic foundations of nanostructured high-capacity positive electrode materials were established, and further chemical and physical optimization may lead to the development of next-generation electrochemical devices.

2.
ChemSusChem ; 13(9): 2256-2263, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31994841

RESUMO

Three porous disulfide-ligand-containing metal-organic frameworks (DS-MOFs) and two nonporous coordination polymers with disulfide ligands (DS-CPs) with various structural dimensionalities were used as cathode active materials in lithium batteries. Charge/discharge performance examinations revealed that only porous DS-MOF-based batteries exhibited significant capacities close to the theoretical values, which was ascribed to the insertion of electrolyte ions into the DS-MOFs. The insolubility of porous 3 D DS-MOFs in the electrolyte resulted in cycling performances superior to that of their 1 D and 2 D porous counterparts. Battery reactions were probed by instrumental analyses. The dual redox reactions of metal ions and disulfide ligands in the MOFs resulted in higher capacities, and the presence of reversible electrochemically dynamic S-S bonds stabilized the cycling performance. Thus, the strategy of S-S moiety trapping in MOFs and the obtained correlation between the structural features and battery performance could contribute to the design of high-performance MOF-based batteries and the practical realization of Li-S batteries.

3.
Nat Commun ; 7: 13814, 2016 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-28008955

RESUMO

Further increase in energy density of lithium batteries is needed for zero emission vehicles. However, energy density is restricted by unavoidable theoretical limits for positive electrodes used in commercial applications. One possibility towards energy densities exceeding these limits is to utilize anion (oxide ion) redox, instead of classical transition metal redox. Nevertheless, origin of activation of the oxide ion and its stabilization mechanism are not fully understood. Here we demonstrate that the suppression of formation of superoxide-like species on lithium extraction results in reversible redox for oxide ions, which is stabilized by the presence of relatively less covalent character of Mn4+ with oxide ions without the sacrifice of electronic conductivity. On the basis of these findings, we report an electrode material, whose metallic constituents consist only of 3d transition metal elements. The material delivers a reversible capacity of 300 mAh g-1 based on solid-state redox reaction of oxide ions.

4.
J Chem Phys ; 138(24): 244705, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23822262

RESUMO

High-resolution medium energy ion scattering (MEIS) spectrometry coupled with photoelectron spectroscopy revealed unambiguously that the initial SrTiO3(001) surface chemically etched in a buffered NH4F-HF solution was perfectly terminated with a single-layer (SL) of TiO2(001) and annealing the surface at 600-800 [ordinal indicator, masculine]C in ultrahigh vacuum (UHV) led to a (2 × 1)-reconstructed surface terminated with a double-layer (DL) of TiO2(001). After annealing in UHV, rock-salt SrO(001) clusters with two atomic layer height grew epitaxially on the DL-TiO2(001)-2 × 1 surface with a coverage of 20%-30%. High-resolution MEIS in connection with ab initio calculations demonstrated the structure of the DL-TiO2(001)-2 × 1 surface close to that proposed by Erdman et al. [Nature (London) 419, 55 (2002)] rather than that predicted by Herger et al. [Phys. Rev. Lett. 98, 076102 (2007)]. Based on the MEIS analysis combined with the ab initio calculations, we propose the most probable (2 × 1) surface structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA