Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytochemistry ; 152: 154-161, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29775866

RESUMO

In the highly aluminum-resistant tree Eucalyptus camaldulensis, hydrolyzable tannins are proposed to play a role in internal detoxification of aluminum, which is a major factor inhibiting plant growth on acid soils. To understand and modulate the molecular mechanisms of aluminum detoxification by hydrolyzable tannins, the biosynthetic genes need to be identified. In this study, we identified and characterized genes encoding UDP-glucose:gallate glucosyltransferase, which catalyzes the formation of 1-O-galloyl-ß-d-glucose (ß-glucogallin), the precursor of hydrolyzable tannins. By homology-based cloning, seven full-length candidate cDNAs were isolated from E. camaldulensis and expressed in Escherichia coli as recombinant N-terminal His-tagged proteins. Phylogenetic analysis classified four of these as UDP glycosyltransferase (UGT) 84A subfamily proteins (UGT84A25a, -b, UGT84A26a, -b) and the other three as UGT84J subfamily proteins (UGT84J3, -4, -5). In vitro enzyme assays showed that the UGT84A proteins catalyzed esterification of UDP-glucose and gallic acid to form 1-O-galloyl-ß-d-glucose, whereas the UGT84J proteins were inactive. Further analyses with UGT84A25a and -26a indicated that they also formed 1-O-glucose esters of other structurally related hydroxybenzoic and hydroxycinnamic acids with a preference for hydroxybenzoic acids. The UGT84A genes were expressed in leaves, stems, and roots of E. camaldulensis, regardless of aluminum stress. Taken together, our results suggest that the UGT84A subfamily enzymes of E. camaldulensis are responsible for constitutive production of 1-O-galloyl-ß-d-glucose, which is the first step of hydrolyzable tannin biosynthesis.


Assuntos
Eucalyptus/metabolismo , Glucosiltransferases/análise , Taninos Hidrolisáveis/metabolismo , Alumínio/farmacologia , Eucalyptus/efeitos dos fármacos , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Taninos Hidrolisáveis/química , Estrutura Molecular , Filogenia
2.
Phytochemistry ; 124: 46-57, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26833384

RESUMO

In Brassica napus, suppression of the key biosynthetic enzyme UDP-glucose:sinapic acid glucosyltransferase (UGT84A9) inhibits the biosynthesis of sinapine (sinapoylcholine), the major phenolic component of seeds. Based on the accumulation kinetics of a total of 158 compounds (110 secondary and 48 primary metabolites), we investigated how suppression of the major sink pathway of sinapic acid impacts the metabolome of developing seeds and seedlings. In UGT84A9-suppressing (UGT84A9i) lines massive alterations became evident in late stages of seed development affecting the accumulation levels of 58 secondary and 7 primary metabolites. UGT84A9i seeds were characterized by decreased amounts of various hydroxycinnamic acid (HCA) esters, and increased formation of sinapic and syringic acid glycosides. This indicates glycosylation and ß-oxidation as metabolic detoxification strategies to bypass intracellular accumulation of sinapic acid. In addition, a net loss of sinapic acid upon UGT84A9 suppression may point to a feedback regulation of HCA biosynthesis. Surprisingly, suppression of UGT84A9 under control of the seed-specific NAPINC promoter was maintained in cotyledons during the first two weeks of seedling development and associated with a reduced and delayed transformation of sinapine into sinapoylmalate. The lack of sinapoylmalate did not interfere with plant fitness under UV-B stress. Increased UV-B radiation triggered the accumulation of quercetin conjugates whereas the sinapoylmalate level was not affected.


Assuntos
Brassica napus , Glucosiltransferases/metabolismo , Brassica napus/enzimologia , Brassica napus/genética , Brassica napus/metabolismo , Brassica napus/efeitos da radiação , Colina/análogos & derivados , Colina/metabolismo , Colina/efeitos da radiação , Cotilédone/metabolismo , Ácidos Cumáricos/análise , Ácidos Cumáricos/metabolismo , Ácidos Cumáricos/efeitos da radiação , Glucosiltransferases/efeitos da radiação , Malatos/metabolismo , Estrutura Molecular , Fenilpropionatos/metabolismo , Plântula/metabolismo , Sementes/metabolismo , Raios Ultravioleta
3.
J Biol Chem ; 291(14): 7621-36, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26786108

RESUMO

Glycation is the reaction of carbonyl compounds (reducing sugars and α-dicarbonyls) with amino acids, lipids, and proteins, yielding early and advanced glycation end products (AGEs). The AGEs can be formed via degradation of early glycation intermediates (glycoxidation) and by interaction with the products of monosaccharide autoxidation (autoxidative glycosylation). Although formation of these potentially deleterious compounds is well characterized in animal systems and thermally treated foods, only a little information about advanced glycation in plants is available. Thus, the knowledge of the plant AGE patterns and the underlying pathways of their formation are completely missing. To fill this gap, we describe the AGE-modified proteome ofBrassica napusand characterize individual sites of advanced glycation by the methods of liquid chromatography-based bottom-up proteomics. The modification patterns were complex but reproducible: 789 AGE-modified peptides in 772 proteins were detected in two independent experiments. In contrast, only 168 polypeptides contained early glycated lysines, which did not resemble the sites of advanced glycation. Similar observations were made withArabidopsis thaliana The absence of the early glycated precursors of the AGE-modified protein residues indicated autoxidative glycosylation, but not glycoxidation, as the major pathway of AGE formation. To prove this assumption and to identify the potential modifying agents, we estimated the reactivity and glycative potential of plant-derived sugars using a model peptide approach and liquid chromatography-mass spectrometry-based techniques. Evaluation of these data sets together with the assessed tissue carbohydrate contents revealed dihydroxyacetone phosphate, glyceraldehyde 3-phosphate, ribulose, erythrose, and sucrose as potential precursors of plant AGEs.


Assuntos
Brassica napus/metabolismo , Glicoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Brassica napus/genética , Glicoproteínas/genética , Glicosilação , Proteínas de Plantas/genética , Proteoma/genética , Proteômica
4.
Phytochemistry ; 99: 44-51, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24412325

RESUMO

A cDNA encoding the ester-forming hydroxybenzoic acid glucosyltransferase UGT84A13 was isolated from a cDNA library of Quercus robur swelling buds and young leaves. The enzyme displayed high sequence identity to resveratrol/hydroxycinnamate and hydroxybenzoate/hydroxycinnamate glucosyltransferases from Vitis species and clustered to the phylogenetic group L of plant glucosyltransferases, mainly involved in the formation of 1-O-ß-D-glucose esters. In silico transcriptome analysis confirmed expression of UGT84A13 in Quercus tissues which were previously shown to exhibit UDP-glucose:gallic acid glucosyltransferase activity. UGT84A13 was functionally expressed in Escherichia coli as N-terminal His-tagged protein. In vitro kinetic measurements with the purified recombinant enzyme revealed a clear preference for hydroxybenzoic acids as glucosyl acceptor in comparison to hydroxycinnamic acids. Of the preferred in vitro substrates, protocatechuic, vanillic and gallic acid, only the latter and its corresponding 1-O-ß-D-glucose ester were found to be accumulated in young oak leaves. This indicates that in planta UGT84A13 catalyzes the formation of , 1-O-galloyl-ß-D-glucose, the first committed step of gallotannin biosynthesis.


Assuntos
Glucosiltransferases/metabolismo , Taninos Hidrolisáveis/metabolismo , Quercus/enzimologia , Glucosiltransferases/isolamento & purificação , Taninos Hidrolisáveis/química , Estrutura Molecular , Folhas de Planta/enzimologia , Brotos de Planta/enzimologia , Quercus/metabolismo
5.
Plant Physiol ; 161(4): 1656-69, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23424250

RESUMO

As a result of the phenylpropanoid pathway, many Brassicaceae produce considerable amounts of soluble hydroxycinnamate conjugates, mainly sinapate esters. From oilseed rape (Brassica napus), we cloned two orthologs of the Arabidopsis (Arabidopsis thaliana) gene reduced epidermal fluorescence1 (REF1) encoding a coniferaldehyde/sinapaldehyde dehydrogenase. The enzyme is involved in the formation of ferulate and sinapate from the corresponding aldehydes, thereby linking lignin and hydroxycinnamate biosynthesis as a potential branch-point enzyme. We used RNA interference to silence REF1 genes in seeds of oilseed rape. Nontargeted metabolite profiling showed that BnREF1-suppressing seeds produced a novel chemotype characterized by reduced levels of sinapate esters, the appearance of conjugated monolignols, dilignols, and trilignols, altered accumulation patterns of kaempferol glycosides, and changes in minor conjugates of caffeate, ferulate, and 5-hydroxyferulate. BnREF1 suppression affected the level of minor sinapate conjugates more severely than that of the major component sinapine. Mapping of the changed metabolites onto the phenylpropanoid metabolic network revealed partial redirection of metabolic sequences as a major impact of BnREF1 suppression.


Assuntos
Aldeído Desidrogenase/química , Brassica napus/metabolismo , Proteínas de Plantas/metabolismo , Propanóis/metabolismo , Sementes/metabolismo , Homologia de Sequência de Aminoácidos , Vias Biossintéticas , Southern Blotting , Brassica napus/enzimologia , Brassica napus/genética , Colina/análogos & derivados , Colina/análise , Cromatografia Líquida de Alta Pressão , Cruzamentos Genéticos , Ésteres/química , Ésteres/metabolismo , Genes de Plantas/genética , Genoma de Planta/genética , Homozigoto , Metaboloma , Dados de Sequência Molecular , Plantas Geneticamente Modificadas
6.
Theor Appl Genet ; 124(5): 957-69, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22198204

RESUMO

We developed two mutant populations of oilseed rape (Brassica napus L.) using EMS (ethylmethanesulfonate) as a mutagen. The populations were derived from the spring type line YN01-429 and the winter type cultivar Express 617 encompassing 5,361 and 3,488 M(2) plants, respectively. A high-throughput screening protocol was established based on a two-dimensional 8× pooling strategy. Genes of the sinapine biosynthesis pathway were chosen for determining the mutation frequencies and for creating novel genetic variation for rapeseed breeding. The extraction meal of oilseed rape is a rich protein source containing about 40% protein. Its use as an animal feed or human food, however, is limited by antinutritive compounds like sinapine. The targeting-induced local lesions in genomes (TILLING) strategy was applied to identify mutations of major genes of the sinapine biosynthesis pathway. We constructed locus-specific primers for several TILLING amplicons of two sinapine synthesis genes, BnaX.SGT and BnaX.REF1, covering 80-90% of the coding sequences. Screening of both populations revealed 229 and 341 mutations within the BnaX.SGT sequences (135 missense and 13 nonsense mutations) and the BnaX.REF1 sequences (162 missense, 3 nonsense, 8 splice site mutations), respectively. These mutants provide a new resource for breeding low-sinapine oilseed rape. The frequencies of missense and nonsense mutations corresponded to the frequencies of the target codons. Mutation frequencies ranged from 1/12 to 1/22 kb for the Express 617 population and from 1/27 to 1/60 kb for the YN01-429 population. Our TILLING resource is publicly available. Due to the high mutation frequencies in combination with an 8× pooling strategy, mutants can be routinely identified in a cost-efficient manner. However, primers have to be carefully designed to amplify single sequences from the polyploid rapeseed genome.


Assuntos
Brassica napus/genética , Cruzamento/métodos , Colina/análogos & derivados , Variação Genética , Mutação/genética , Colina/biossíntese , Colina/genética , Cruzamentos Genéticos , Primers do DNA/genética , Metanossulfonato de Etila , Mutagênese/genética
7.
Theor Appl Genet ; 120(8): 1485-500, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20087565

RESUMO

In oilseed rape (Brassica napus), the glucosyltransferase UGT84A9 catalyzes the formation of 1-O-sinapoyl-beta-glucose, which feeds as acyl donor into a broad range of accumulating sinapate esters, including the major antinutritive seed component sinapoylcholine (sinapine). Since down-regulation of UGT84A9 was highly efficient in decreasing the sinapate ester content, the genes encoding this enzyme were considered as potential targets for molecular breeding of low sinapine oilseed rape. B. napus harbors two distinguishable sequence types of the UGT84A9 gene designated as UGT84A9-1 and UGT84A9-2. UGT84A9-1 is the predominantly expressed variant, which is significantly up-regulated during the seed filling phase, when sinapate ester biosynthesis exhibits strongest activity. In the allotetraploid genome of B. napus, UGT84A9-1 is represented by two loci, one derived from the Brassica C-genome (UGT84A9a) and one from the Brassica A-genome (UGT84A9b). Likewise, for UGT84A9-2 two loci were identified in B. napus originating from both diploid ancestor genomes (UGT84A9c, Brassica C-genome; UGT84A9d, Brassica A-genome). The distinct UGT84A9 loci were genetically mapped to linkage groups N15 (UGT84A9a), N05 (UGT84A9b), N11 (UGT84A9c) and N01 (UGT84A9d). All four UGT84A9 genomic loci from B. napus display a remarkably low micro-collinearity with the homologous genomic region of Arabidopsis thaliana chromosome III, but exhibit a high density of transposon-derived sequence elements. Expression patterns indicate that the orthologous genes UGT84A9a and UGT84A9b should be considered for mutagenesis inactivation to introduce the low sinapine trait into oilseed rape.


Assuntos
Brassica/enzimologia , Regulação Enzimológica da Expressão Gênica , Glucosiltransferases/genética , Arabidopsis/genética , Sequência de Bases , Cromossomos Artificiais Bacterianos , Primers do DNA/genética , DNA Complementar/metabolismo , Ligação Genética , Genoma de Planta , Glucosiltransferases/biossíntese , Modelos Químicos , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Ploidias
8.
Planta ; 227(2): 375-85, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17882453

RESUMO

This study describes the molecular characterization of the genes BnSCT1 and BnSCT2 from oilseed rape (Brassica napus) encoding the enzyme 1-O-sinapoyl-beta-glucose:choline sinapoyltransferase (SCT; EC 2.3.1.91). SCT catalyzes the 1-O-beta-acetal ester-dependent biosynthesis of sinapoylcholine (sinapine), the most abundant phenolic compound in seeds of B. napus. GUS fusion experiments indicated that seed specificity of BnSCT1 expression is caused by an inducible promoter confining transcription to embryo tissues and the aleurone layer. A dsRNAi construct designed to silence seed-specifically the BnSCT1 gene was effective in reducing the sinapine content of Arabidopsis seeds thus defining SCT genes as targets for molecular breeding of low sinapine cultivars of B. napus. Sequence analyses revealed that in the allotetraploid genome of B. napus the gene BnSCT1 represents the C genome homologue from the B. oleracea progenitor whereas BnSCT2 was derived from the Brassica A genome of B. rapa. The BnSCT1 and BnSCT2 loci showed colinearity with the homologous Arabidopsis SNG2 gene locus although the genomic microstructure revealed the deletion of a cluster of three genes and several coding regions in the B. napus genome.


Assuntos
Aciltransferases/genética , Aciltransferases/metabolismo , Brassica napus/enzimologia , Brassica napus/genética , Colina/análogos & derivados , Aciltransferases/química , Arabidopsis/genética , Arabidopsis/metabolismo , Colina/biossíntese , Regulação da Expressão Gênica de Plantas , Mutação , Filogenia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Interferência de RNA , Nicotiana/citologia
9.
Planta ; 225(2): 515-22, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16909288

RESUMO

This study describes a systematic screen for secondary product UDP-glycosyltransferases (UGTs; EC 2.4.1) involved in seed development of oilseed rape (Brassica napus) and was aimed at identifying genes related to UGT84A9 encoding UDP-glucose:sinapate glucosyltransferase (EC 2.4.1.120), a proven target for molecular breeding approaches to reduce the content of anti-nutritive sinapate esters. By RT-PCR with primers recognizing the conserved signature motif of UGTs, 13 distinct ESTs could be generated from seed RNA. Sequence analysis allowed to assign the isolated ESTs to groups B, D, E, and L of the UGT family. In an alternative approach, two open reading frames related to UGT84A9 were cloned from the B. napus genome and designated as UGT84A10 and UGT84A11, respectively. Functional expression of UGT84A10 revealed that the encoded enzyme catalyzes the formation of 1-O-acylglucosides (beta-acetal esters) with several hydroxycinnamates whereas, in our hands, the recombinant UGT84A11 did not display this enzymatic activity. Semi-quantitative RT-PCR confirmed that the majority of potential UGTs specified by the isolated ESTs is differentially expressed. A pronounced transcriptional up-regulation during seed development was evident for UGT84A9 and one EST (BnGT3) clustering in group E of UGTs. UGT84A10 was highly induced in flowers and expressed to a moderate level in late seed maturation indicating a possible involvement in seed-specific sinapate ester biosynthesis.


Assuntos
Brassica napus/enzimologia , Glicosiltransferases/metabolismo , Sementes/enzimologia , Sequência de Aminoácidos , Clonagem Molecular , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA