RESUMO
Reactive oxygen species (ROS) play a crucial role as signaling molecules in both plant and animal cells, enabling rapid responses to various stimuli. Among the many cellular mechanisms used to generate and transduce ROS signals, ROS-induced-ROS release (RIRR) is emerging as an important pathway involved in the responses of various multicellular and unicellular organisms to environmental stresses. In RIRR, one cellular compartment, organelle, or cell generates or releases ROS, triggering an increased ROS production and release by another compartment, organelle, or cell, thereby giving rise to a fast propagating ROS wave. This RIRR-based signal relay has been demonstrated to facilitate mitochondria-to-mitochondria communication in animal cells and long-distance systemic signaling in plants in response to biotic and abiotic stresses. More recently, it has been discovered that different unicellular microorganism communities also exhibit a RIRR cell-to-cell signaling process triggered by a localized stress treatment. However, the precise mechanism underlying the propagation of the ROS signal among cells within these unicellular communities remained elusive. In this study, we employed a reaction-diffusion model incorporating the RIRR mechanism to analyze the propagation of ROS-mediated signals. By effectively balancing production and scavenging processes, our model successfully reproduces the experimental ROS signal velocities observed in unicellular green algae (Chlamydomonas reinhardtii) colonies grown on agar plates, furthering our understanding of intercellular ROS communication.
Assuntos
Chlamydomonas reinhardtii , Espécies Reativas de Oxigênio , Transdução de Sinais , Chlamydomonas reinhardtii/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Modelos BiológicosRESUMO
Mitochondria play a central role in muscle metabolism and function. A unique family of iron-sulfur proteins, termed CDGSH Iron Sulfur Domain-containing (CISD/NEET) proteins, support mitochondrial function in skeletal muscles. The abundance of these proteins declines during aging leading to muscle degeneration. Although the function of the outer mitochondrial CISD/NEET proteins, CISD1/mitoNEET and CISD2/NAF-1, has been defined in skeletal muscle cells, the role of the inner mitochondrial CISD protein, CISD3/MiNT, is currently unknown. Here, we show that CISD3 deficiency in mice results in muscle atrophy that shares proteomic features with Duchenne muscular dystrophy. We further reveal that CISD3 deficiency impairs the function and structure of skeletal muscles, as well as their mitochondria, and that CISD3 interacts with, and donates its [2Fe-2S] clusters to, complex I respiratory chain subunit NADH Ubiquinone Oxidoreductase Core Subunit V2 (NDUFV2). Using coevolutionary and structural computational tools, we model a CISD3-NDUFV2 complex with proximal coevolving residue interactions conducive of [2Fe-2S] cluster transfer reactions, placing the clusters of the two proteins 10 to 16 Å apart. Taken together, our findings reveal that CISD3/MiNT is important for supporting the biogenesis and function of complex I, essential for muscle maintenance and function. Interventions that target CISD3 could therefore impact different muscle degeneration syndromes, aging, and related conditions.
Assuntos
Complexo I de Transporte de Elétrons , Proteínas Mitocondriais , Músculo Esquelético , Animais , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Camundongos , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Mitocôndrias/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/genética , Camundongos Knockout , Mitocôndrias Musculares/metabolismo , Humanos , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/genéticaRESUMO
The interplay between reactive oxygen species (ROS) and the redox state of cells is deeply rooted in the biology of almost all organisms, regulating development, growth, and responses to the environment. Recent studies revealed that the ROS levels and redox state of one cell can be transmitted, as an information 'state' or 'currency', to other cells and spread by cell-to-cell communication within an entire community of cells or an organism. Here, we discuss the different pathways that mediate cell-to-cell signaling in plants, their hierarchy, and the different mechanisms that transmit ROS/redox signaling between different cells. We further hypothesize that ROS/redox signaling between different organisms could play a key role within the 'one world' principle, impacting human health and our future.
Assuntos
Comunicação Celular , Plantas , Espécies Reativas de Oxigênio , Transdução de Sinais , Espécies Reativas de Oxigênio/metabolismo , Plantas/metabolismo , Oxirredução , Estresse Fisiológico , Fenômenos Fisiológicos VegetaisRESUMO
Under natural conditions, abiotic stresses that limit plant growth and development tend to occur simultaneously, rather than individually. Due to global warming and climate change, the frequency and intensity of heat and salt stresses are becoming more frequent. Our aim is to determine the response mechanisms of tomato to different intensities of combined heat and salt stresses. The physiological and morphological responses and photosynthesis/reactive oxygen species (ROS)-related genes of tomato plants were compared under a control, heat stress, salt stress (50/100/200/400 mM NaCl), and a combination of salt and heat stresses. The stomatal conductance (gs) of tomato leaves significantly increased at a heat + 50 mM NaCl treatment on day 4, but significantly decreased at heat + 100/200/400 mM NaCl treatments, compared with the control on days 4 and 8. The O2·- production rate of tomato plants was significantly higher at heat + 100/200/400 mM NaCl than the control, which showed no significant difference between heat + 50 mM NaCl treatment and the control on days 4 and 8. Ascorbate peroxidase 2 was significantly upregulated by heat + 100/200/400 mM NaCl treatment as compared with heat + 50 mM NaCl treatment on days 4 and 8. This study demonstrated that the dominant effect ratio of combined heat and salt stress on tomato plants can shift from heat to salt, when the intensity of salt stress increased from 50 mM to 100 mM or above. This study provides important information for tomato tolerance improvement at combined heat and salt stresses.
RESUMO
The utmost goal of selecting an RNA-Seq alignment software is to perform accurate alignments with a robust algorithm, which is capable of detecting the various intricacies underlying read-mapping procedures and beyond. Most alignment software tools are typically pre-tuned with human or prokaryotic data, and therefore may not be suitable for applications to other organisms, such as plants. The rapidly growing plant RNA-Seq databases call for the assessment of the alignment tools on curated plant data, which will aid the calibration of these tools for applications to plant transcriptomic data. We therefore focused here on benchmarking RNA-Seq read alignment tools, using simulated data derived from the model organism Arabidopsis thaliana. We assessed the performance of five popular RNA-Seq alignment tools that are currently available, based on their usage (citation count). By introducing annotated single nucleotide polymorphisms (SNPs) from The Arabidopsis Information Resource (TAIR), we recorded alignment accuracy at both base-level and junction base-level resolutions for each alignment tool. In addition to assessing the performance of the alignment tools at their default settings, accuracies were also recorded by varying the values of numerous parameters, including the confidence threshold and the level of SNP introduction. The performances of the aligners were found consistent under various testing conditions at the base-level accuracy; however, the junction base-level assessment produced varying results depending upon the applied algorithm. At the read base-level assessment, the overall performance of the aligner STAR was superior to other aligners, with the overall accuracy reaching over 90% under different test conditions. On the other hand, at the junction base-level assessment, SubRead emerged as the most promising aligner, with an overall accuracy over 80% under most test conditions.
RESUMO
Cell-to-cell communication plays a cardinal role in the biology of multicellular organisms. H2O2 is an important cell-to-cell signaling molecule involved in the response of mammalian cells to wounding and other stimuli. We previously identified a signaling pathway that transmits wound-induced cell-to-cell H2O2 signals within minutes over long distances, measured in centimeters, in a monolayer of cardiomyocytes. Here we report that this long-distance H2O2 signaling pathway is accompanied by enhanced accumulation of cytosolic H2O2 and altered redox state in cells along its path. We further show that it requires the production of superoxide, as well as the function of gap junctions, and that it is accompanied by changes in the abundance of hundreds of proteins in cells along its path. Our findings highlight the existence of a unique and rapid long-distance H2O2 signaling pathway that could play an important role in different inflammatory responses, wound responses/healing, cardiovascular disease, and/or other conditions.
Assuntos
Peróxido de Hidrogênio , Miócitos Cardíacos , Animais , Miócitos Cardíacos/metabolismo , Peróxido de Hidrogênio/metabolismo , Transdução de Sinais , Comunicação Celular , Superóxidos/metabolismo , Mamíferos/metabolismoRESUMO
Plants growing under natural conditions experience high light (HL) intensities that are often accompanied by elevated temperatures. These conditions could affect photosynthesis, reduce yield, and negatively impact agricultural productivity. The combination of different abiotic challenges creates a new type of stress for plants by generating complex environmental conditions that often exceed the impact of their individual parts. Transcription factors (TFs) play a key role in integrating the different molecular signals generated by multiple stress conditions, orchestrating the acclimation response of plants to stress. In this study, we show that the TF WRKY48 negatively controls the acclimation of Arabidopsis thaliana plants to a combination of HL and heat stress (HL + HS), and its expression is attenuated by jasmonic acid under HL + HS conditions. Using comparative physiological and transcriptomic analyses between wild-type and wrky48 mutants, we further demonstrate that under control conditions, WRKY48 represses the expression of a set of transcripts that are specifically required for the acclimation of plants to HL + HS, hence its suppression during the HL + HS stress combination contributes to plant survival under these conditions. Accordingly, mutants that lack WRKY48 are more resistant to HL + HS, and transgenic plants that overexpress WRKY48 are more sensitive to it. Taken together, our findings reveal that WRKY48 is a negative regulator of the transcriptomic response of Arabidopsis to HL + HS and provide new insights into the complex regulatory networks of plant acclimation to stress combination.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Resposta ao Choque Térmico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Aclimatação , Luz , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse FisiológicoRESUMO
To successfully survive, develop, grow and reproduce, multicellular organisms must coordinate their molecular, physiological, developmental and metabolic responses among their different cells and tissues. This process is mediated by cell-to-cell, vascular and/or volatile communication, and involves electric, chemical and/or hydraulic signals. Within this context, stomata serve a dual role by coordinating their responses to the environment with their neighbouring cells at the epidermis, but also with other stomata present on other parts of the plant. As stomata represent one of the most important conduits between the plant and its above-ground environment, as well as directly affect photosynthesis, respiration and the hydraulic status of the plant by controlling its gas and vapour exchange with the atmosphere, coordinating the overall response of stomata within and between different leaves and tissues plays a cardinal role in plant growth, development and reproduction. Here, we discuss different examples of local and systemic stomatal coordination, the different signalling pathways that mediate them, and the importance of systemic stomatal coordination to our food supply, ecosystems and weather patterns, under our changing climate. We further discuss the potential biotechnological implications of regulating systemic stomatal responses for enhancing agricultural productivity in a warmer and CO2 -rich environment.
Assuntos
Ecossistema , Estômatos de Plantas , Estômatos de Plantas/fisiologia , Plantas/metabolismo , Folhas de Planta/metabolismo , Fotossíntese/fisiologia , Mudança ClimáticaRESUMO
The complexity of environmental factors affecting crops in the field is gradually increasing due to climate change-associated weather events, such as droughts or floods combined with heat waves, coupled with the accumulation of different environmental and agricultural pollutants. The impact of multiple stress conditions on plants was recently termed "multifactorial stress combination" (MFSC) and defined as the occurrence of 3 or more stressors that impact plants simultaneously or sequentially. We recently reported that with the increased number and complexity of different MFSC stressors, the growth and survival of Arabidopsis (Arabidopsis thaliana) seedlings declines, even if the level of each individual stress is low enough to have no significant effect on plants. However, whether MFSC would impact commercial crop cultivars is largely unknown. Here, we reveal that a MFSC of 5 different low-level abiotic stresses (salinity, heat, the herbicide paraquat, phosphorus deficiency, and the heavy metal cadmium), applied in an increasing level of complexity, has a significant negative impact on the growth and biomass of a commercial rice (Oryza sativa) cultivar and a maize (Zea mays) hybrid. Proteomics, element content, and mixOmics analyses of MFSC in rice identified proteins that correlate with the impact of MFSC on rice seedlings, and analysis of 42 different rice genotypes subjected to MFSC revealed substantial genetic variability in responses to this unique state of stress combination. Taken together, our findings reveal that the impacts of MFSC on 2 different crop species are severe and that MFSC may substantially affect agricultural productivity.
Assuntos
Arabidopsis , Oryza , Oryza/genética , Zea mays/genética , Agricultura , BiomassaRESUMO
Global warming, climate change, and industrial pollution are altering our environment subjecting plants, microbiomes, and ecosystems to an increasing number and complexity of abiotic stress conditions, concurrently or sequentially. These conditions, termed, "multifactorial stress combination" (MFSC), can cause a significant decline in plant growth and survival. However, the impacts of MFSC on reproductive tissues and yield of major crop plants are largely unknown. We subjected soybean (Glycine max) plants to a MFSC of up to five different stresses (water deficit, salinity, low phosphate, acidity, and cadmium), in an increasing level of complexity, and conducted integrative transcriptomic-phenotypic analysis of their reproductive and vegetative tissues. We reveal that MFSC has a negative cumulative effect on soybean yield, that each set of MFSC condition elicits a unique transcriptomic response (that is different between flowers and leaves), and that selected genes expressed in leaves or flowers of soybean are linked to the effects of MFSC on different vegetative, physiological, and/or reproductive parameters. Our study identified networks and pathways associated with reactive oxygen species, ascorbic acid and aldarate, and iron/copper signaling/metabolism as promising targets for future biotechnological efforts to augment the resilience of reproductive tissues of major crop plants to MFSC. In addition, we provide unique phenotypic and transcriptomic datasets for dissecting the mechanistic effects of MFSC on the vegetative, physiological, and reproductive processes of a crop plant.
Assuntos
Ecossistema , Grão Comestível , Grão Comestível/genética , Perfilação da Expressão Gênica , Transcriptoma , Estresse Fisiológico/genéticaRESUMO
With global warming and climate change, abiotic stresses often simultaneously occur. Combined salt and heat stress was a common phenomenon that was severe, particularly in arid/semi-arid lands. We aimed to reveal the systematic responsive mechanisms of tomato genotypes with different salt/heat susceptibilities to combined salt and heat stress. Morphological and physiological responses of salt-tolerant/sensitive and heat-tolerant/sensitive tomatoes at control, heat, salt and combined stress were investigated. Based on leaf Fv /Fm and H2 O2 content, samples from tolerant genotype at the four treatments for 36 h were taken for transcriptomics and metabolomics. We found that plant height, dry weight and net photosynthetic rate decreased while leaf Na+ concentration increased in all four genotypes under salt and combined stress than control. Changes in physiological indicators such as photosynthetic parameters and defence enzyme activities in tomato under combined stress were regulated by the expression of relevant genes and the accumulation of key metabolites. We screened five key pathways in tomato responding to a combination of salt and heat stress, such as oxidative phosphorylation (map00190). Synergistic regulation at morphological, physiological, transcriptional and metabolic levels in tomato plants was induced by combined stress. Heat stress was considered as a dominant stressor for tomato plants under the current combined stress. The oxidative phosphorylation pathway played a key role in tomato in response to combined stress, where tapped key genes (e.g. alternative oxidase, Aox1a) need further functional analysis. Our study will provide a valuable resource important for studying stress combination and improving tomato tolerance.
Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Resposta ao Choque Térmico/genética , Estresse Fisiológico , Fotossíntese , Folhas de Planta/metabolismoRESUMO
The complexity of environmental conditions encountered by plants in the field, or in nature, is gradually increasing due to anthropogenic activities that promote global warming, climate change, and increased levels of pollutants. While in the past it seemed sufficient to study how plants acclimate to one or even two different stresses affecting them simultaneously, the complex conditions developing on our planet necessitate a new approach of studying stress in plants: Acclimation to multiple stress conditions occurring concurrently or consecutively (termed, multifactorial stress combination [MFSC]). In an initial study of the plant response to MFSC, conducted with Arabidopsis thaliana seedlings subjected to an MFSC of six different abiotic stresses, it was found that with the increase in the number and complexity of different stresses simultaneously impacting a plant, plant growth and survival declined, even if the effects of each stress involved in such MFSC on the plant was minimal or insignificant. In three recent studies, conducted with different crop plants, MFSC was found to have similar effects on a commercial rice cultivar, a maize hybrid, tomato, and soybean, causing significant reductions in growth, biomass, physiological parameters, and/or yield traits. As the environmental conditions on our planet are gradually worsening, as well as becoming more complex, addressing MFSC and its effects on agriculture and ecosystems worldwide becomes a high priority. In this review, we address the effects of MFSC on plants, crops, agriculture, and different ecosystems worldwide, and highlight potential avenues to enhance the resilience of crops to MFSC.
Assuntos
Produtos Agrícolas , Ecossistema , Desenvolvimento Vegetal , Mudança Climática , Plântula , Estresse FisiológicoRESUMO
Central metabolism is organised through high-flux, Nicotinamide Adenine Dinucleotide (NAD+ /NADH) and NADP+ /NADPH systems operating at near equilibrium. As oxygen is indispensable for aerobic organisms, these systems are also linked to the levels of reactive oxygen species, such as H2 O2 , and through H2 O2 to the regulation of macromolecular structures and activities, via kinetically controlled sulphur switches in the redox proteome. Dynamic changes in H2 O2 production, scavenging and transport, associated with development, growth and responses to the environment are, therefore, linked to the redox state of the cell and regulate cellular function. These basic principles form the 'redox code' of cells and were first defined by D. P. Jones and H. Sies in 2015. Here, we apply these principles to plants in which recent studies have shown that they can also explain cell-to-cell and even plant-to-plant signalling processes. The redox code is, therefore, an integral part of biological systems and can be used to explain multiple processes in plants at the subcellular, cellular, tissue, whole organism and perhaps even community and ecosystem levels. As the environmental conditions on our planet are worsening due to global warming, climate change and increased pollution levels, new studies are needed applying the redox code of plants to these changes.
RESUMO
With global climate change, the frequency and intensity of waterlogging events are increasing due to frequent and heavy precipitation. Little is known however about the response of plants to repeated waterlogging stress events. The aim is to clarify physiological regulation mechanisms of tomato plants under repeated waterlogging stress, and whether Trichoderma harzianum can alleviate waterlogging injury. We identified two genotypes of tomato, 'MIX-002' and 'LA4440', as waterlogging tolerant and sensitive genotypes, respectively, based on plant biomass accumulation. The two tomato genotypes were subjected to a waterlogging priming treatment for 2 days (excess water for 1 cm above substrate surface) followed by a recovery stage for 2 days, and then a second waterlogging stress for 5 days (excess water for 1 cm above substrate surface) followed by a second recovery stage for 3 days. Leaf physiological, plant growth parameters, and the expression of five key genes were investigated. We found that the two genotypes responded differently to waterlogging priming and stress in terms of photosynthesis, reactive oxygen species (ROS), and osmotic regulatory mechanisms. Waterlogging stress significantly increased H2O2 content of 'MIX-002', while that of 'LA4440' had no significant change. Under waterlogging stress, photosynthesis of the two genotypes treated with waterlogging priming returned to the control level. However, Trichoderma harzianum treatment during the second recovery stage did not show positive mitigative effects. The plants of 'LA4440' with priming showed lower peroxidase (POD) activity and proline content but higher H2O2 content than that without priming under waterlogging stress. Under waterlogging stress with priming as compared to without priming, SODCC2 was downregulated in two tomatoes, and AGR2 and X92888 were upregulated in 'MIX-002' but downregulated in 'LA4440'. Overall, the two tomato genotypes exhibited distinct photosynthetic, ROS and osmotic regulatory mechanisms responding to the waterlogging stress. Waterlogging priming can induce stress memory by adjusting stomatal conductance, sustaining ROS homeostasis, regulating osmotic regulatory substances and key gene expressions mediated by H2O2, and thus alleviate the damage on tomato photosynthesis when waterlogging reoccurred.
RESUMO
Waterlogging stress (WLS) negatively impacts the growth and yield of crops resulting in heavy losses to agricultural production. Previous studies have revealed that WLS induces a systemic response in shoots that is partially dependent on the plant hormones ethylene and abscisic acid. However, the role of rapid cell-to-cell signaling pathways, such as the reactive oxygen species (ROS) and calcium waves, in systemic responses of plants to WLS is unknown at present. Here, we reveal that an abrupt WLS treatment of Arabidopsis (Arabidopsis thaliana) plants growing in peat moss triggers systemic ROS and calcium wave responses and that the WLS-triggered ROS wave response of Arabidopsis is dependent on the ROS-generating RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD), calcium-permeable channels GLUTAMATE-LIKE RECEPTOR 3.3 and 3.6 (GLR3.3 and GLR3.6), and aquaporin PLASMA MEMBRANE INTRINSIC PROTEIN 2;1 (PIP2;1) proteins. We further show that WLS is accompanied by a rapid systemic transcriptomic response that is evident as early as 10 min following waterlogging initiation, includes many hypoxia-response transcripts, and is partially dependent on RBOHD. Interestingly, the abrupt WLS of Arabidopsis resulted in the triggering of a rapid hydraulic wave response and the transient opening of stomata on leaves. In addition, it induced in plants a heightened state of tolerance to a subsequent submergence stress. Taken together, our findings reveal that the initiation of WLS in plants is accompanied by rapid systemic physiological and transcriptomic responses that involve the ROS, calcium, and hydraulic waves, as well as the induction of hypoxia acclimation mechanisms in systemic tissues.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cálcio/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Plantas/metabolismo , Hipóxia , Regulação da Expressão Gênica de PlantasRESUMO
Cell Penetrating Peptides (CPPs) are promising anticancer and antimicrobial drugs. We recently reported that a peptide derived from the human mitochondrial/ER membrane-anchored NEET protein, Nutrient Autophagy Factor 1 (NAF-1; NAF-144-67), selectively permeates and kills human metastatic epithelial breast cancer cells (MDA-MB-231), but not control epithelial cells. As cancer cells alter their phenotype during growth and metastasis, we tested whether NAF-144-67 would also be efficient in killing other human epithelial breast cancer cells that may have a different phenotype. Here we report that NAF-144-67 is efficient in killing BT-549, Hs 578T, MDA-MB-436, and MDA-MB-453 breast cancer cells, but that MDA-MB-157 cells are resistant to it. Upon closer examination, we found that MDA-MB-157 cells display a high content of intracellular vesicles and cellular protrusions, compared to MDA-MB-231 cells, that could protect them from NAF-144-67. Inhibiting the formation of intracellular vesicles and dynamics of cellular protrusions of MDA-MB-157 cells, using a protein translation inhibitor (the antibiotic Cycloheximide), rendered these cells highly susceptible to NAF-144-67, suggesting that under certain conditions, the killing effect of CPPs could be augmented when they are applied in combination with an antibiotic or chemotherapy agent. These findings could prove important for the treatment of metastatic cancers with CPPs and/or treatment combinations that include CPPs.
RESUMO
Passive permeation of small molecules into vesicles with multiple compartments is a critical event in many chemical and biological processes. We consider the translocation of the peptide NAF-144-67 labeled with a fluorescent fluorescein dye across membranes of rhodamine-labeled 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) into liposomes with internal vesicles. Time-resolved microscopy revealed a sequential absorbance of the peptide in both the outer and inner micrometer vesicles that developed over a time period of minutes to hours, illustrating the spatial and temporal progress of the permeation. There is minimal perturbation of the membrane structure and no evidence for pore formation. On the basis of molecular dynamics simulations of NAF-144-67, we extended a local defect model to migration processes that include multiple compartments. The model captures the long residence time of the peptide within the membrane and the rate of permeation through the liposome and its internal compartments. Imaging experiments confirm the semi-quantitative description of the permeation of the model by activated diffusion and open the way for studies of more complex systems.