RESUMO
Although the mutualistic relationship between the intestinal microbiota and the human host is crucial for maintaining health, the underlying mechanisms of this relationship remain unclear. In the present study, aiming to elucidate the regulatory mechanisms governing the Cyp2c55 expression, which is predominantly observed in colonic tissues, germ-free, antibiotic-administered and colitic mice, as well as mouse colonoids, were used as experimental models. RNA sequencing showed comparable decreases in the colonic Cyp2c55 expression in germ-free and antibiotic-administered mice, when compared with that in specific pathogen-free mice. Furthermore, administration of dextran sulfate sodium decreased the Cyp2c55 expression in colitic mice. For these mice, a Pearson correlation analysis also showed a positive correlation between the Cyp2c55 expression and unconjugated bile acids (BAs), including chenodeoxycholic, muricholic, deoxycholic, lithocholic, and ursodeoxycholic acids, as well as taurine (T)-conjugated secondary BAs, including deoxycholic acid. Moreover, bacterial genera, such as Muribaculaceae and unclassified Lachnospiraceae, also exhibited a positive correlation with these BAs. While administration of an agonist of the pregnane X receptor (PXR) increased the Cyp2c55 expression in mouse colonoids, inflammatory cytokines decreased it. In conclusion, Cyp2c55 was highly expressed in the colonic epithelial cells of mice in a microbiota-dependent manner. The underlying mechanism seemed to involve a BA-mediated PXR activation. In addition, the colonic expression of Cyp2c55 was regulated by the inflammatory response. Although the physiological function of Cyp2c55 remains largely unidentified, our findings suggested that Cyp2c55 may play a role in the mutualistic interaction between the intestinal microbiota and the intestinal homeostasis.
Assuntos
Microbioma Gastrointestinal , Inflamação , Animais , Masculino , Camundongos , Ácidos e Sais Biliares/metabolismo , Colite/microbiologia , Colite/induzido quimicamente , Colite/metabolismo , Colo/microbiologia , Colo/metabolismo , Sulfato de Dextrana , Microbioma Gastrointestinal/fisiologia , Inflamação/metabolismo , Inflamação/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos Endogâmicos C57BL , Receptor de Pregnano X/metabolismo , Receptor de Pregnano X/genéticaRESUMO
There have been high expectations in recent years of using xenotransplantation and regenerative medicine to treat humans, and pigs have been utilized as the donor model. Pigs used for these clinical applications must be microbiologically safe, that is, free of infectious pathogens, to prevent infections not only in livestock, but also in humans. Currently, however, the full spectrum of pathogens that can infect to the human host or cause disease in transplanted porcine organs/cells has not been fully defined. In the present study, we thus aimed to develop a larger panel for the detection of pathogens that could potentially infect xenotransplantation donor pigs. Our newly developed panel, which consisted of 76 highly sensitive PCR detection assays, was able to detect 41 viruses, 1 protozoa, and a broad range of bacteria (by use of universal 16S rRNA primers). The applicability of this panel was validated using blood samples from uterectomy-born piglets, and pathogens suspected to be vertically transmitted from sows to piglets were successfully detected. We estimate that, at least for viruses and bacteria, the number of target pathogens detected by the developed screening panel should suffice to meet the microbiological safety levels required worldwide for xenotransplantation and/or regenerative therapy. This panel provides greater diagnosis options to produce donor pigs so that it would render unnecessary to screen for all pathogens listed. Instead, the new panel could be utilized to detect only required pathogens within a given geographic range where the donor pigs for xenotransplantation have been and/or are being developed.
Assuntos
Retrovirus Endógenos , Doadores de Tecidos , Suínos , Animais , Humanos , Feminino , Transplante Heterólogo , RNA Ribossômico 16SRESUMO
Fecal microbiota is a significant factor determining the cause, course, and prognosis of Crohn's disease (CD). However, the factors affecting mucosa-associated microbiota (MAM) remain unclear. This retrospective study examined the differences in ileal MAM between CD patients and healthy controls and investigated the factors affecting MAM in CD patients to clarify potential therapeutic targets. Ileal MAM was obtained using brush forceps during endoscopic examination from 23 healthy controls and 32 CD patients (most were in remission). The samples' microbiota was profiled using the Illumina MiSeq platform. Compared to controls, CD patients had significantly reduced α-diversity in the ileum and a difference in ß-diversity. The abundance of butyric acid-producing bacteria in the ileal MAM was significantly lower in CD patients with a history of abdominal surgery than in those without. Because butyric acid is a major energy source in the intestinal epithelium, its metabolism via ß-oxidation increases oxygen consumption in epithelial cells, reducing oxygen concentration in the intestinal lumen and increasing the abundance of obligate anaerobic bacteria. The suppression of obligate anaerobes in CD patients caused an overgrowth of facultative anaerobes. Summarily, reducing the abundance of butyric acid-producing bacteria in the ileal MAM may play an important role in CD pathophysiology.
Assuntos
Doença de Crohn , Microbioma Gastrointestinal , Microbiota , Humanos , Doença de Crohn/cirurgia , Doença de Crohn/tratamento farmacológico , Doença de Crohn/microbiologia , Ácido Butírico/uso terapêutico , Estudos Retrospectivos , Íleo/cirurgia , Íleo/microbiologia , Bactérias , Mucosa IntestinalRESUMO
Gamma-aminobutyric acid (GABA) is considered as a potential candidate substance that mediates the effects of intestinal bacteria on human mental health. In the present study, we evaluated the effect of water-soluble cellulose acetate (WSCA), a type of cellulose ester, on fermentation and microbial profiles, and GABA production in human stool cultures prepared from fresh feces from volunteers. In addition, the GABA-producing ability of Bacteroides uniformis, which can utilize WSCA, was evaluated in a pure-culture study. All incubations were conducted anaerobically. WSCA supplementation increased (P < 0.05) acetate and propionate production and decreased (P < 0.05) the pH in human fecal cultures. WSCA significantly altered the microbiota, selectively increasing the relative abundance of B. uniformis (P < 0.05). Pure-culture study results revealed that B. uniformis produces GABA, possibly via a glutamate-dependent acid resistance system under low pH conditions. In conclusion, WSCA could be a potential prebiotic material that is fermented by intestinal bacteria and increases short-chain fatty acid and GABA production in the human gut. Bacteroides uniformis might play an important role in both WSCA degradation and GABA production in the intestine.
Assuntos
Celulose , Microbiota , Humanos , Fermentação , Fezes/microbiologia , Acetatos , Ácido gama-AminobutíricoRESUMO
Putatively, colostral proteins are partly absorbed and transferred to blood circulation in newborn piglets, which suggests that colostrum ingestion alters the protein composition of their blood. Here, we conducted a pilot study to estimate the changes in the protein composition of piglet blood. Plasma collected from piglets pre- and post-ingestion of colostrum (PreC and PostC) was analyzed by shotgun proteomics. Proteins in colostrum were also analyzed. We identified 393 and 427 proteins in PreC and PostC plasma, respectively, and 596 colostral proteins. Whereas 202 unique proteins were identified in PostC, PreC and PostC commonly shared 225 proteins. By contrast, when compared with PreC, 54 proteins in PostC had their emPAI values increased >2-fold. Notably, using plasma samples collected from a separate experiment, the concentrations of growth differentiation factor 8 and haptoglobin were higher in PostC than in PreC, which was validated by ELISA. Approximately 60% of the uniquely identified or highly concentrated proteins in PostC were also found in colostrum, which were likely, at least partly, transferred from colostrum. The present study demonstrated that the protein composition of plasma of newborn piglets drastically changed post-colostrum ingestion, partly due to transfer of colostral proteins.
Assuntos
Líquidos Corporais , Colostro , Gravidez , Feminino , Animais , Suínos , Animais Recém-Nascidos , Projetos Piloto , Colostro/metabolismo , Haptoglobinas/metabolismoRESUMO
Growing evidence indicates that porcine colostral exosomes may contribute to the healthy development of piglets. Here, we evaluated in vitro the effect of porcine milk-derived exosomes, in particular colostral exosomes, on T cells in the peripheral blood of suckling piglets. A total of seven sows and thirteen suckling piglets were used. Peripheral blood mononuclear cells (PBMCs) from suckling piglets were cultured with or without milk-derived exosomes (control). Using flow cytometry, the proportion of each T cell subset in cultured PBMCs was analyzed three days post-incubation. PBMCs cultured with porcine colostral exosomes had a higher proportion of CD3+CD4-CD8+ T cells (cytotoxic T cells; Tc) than the control. However, exosomes induced no increase in the Tc cell population in PBMC whose endocytosis was inhibited. We further measured the concentrations of cytokines in the culture supernatant. Exosome-treated PBMCs had a higher cytokine IL-2 concentration than the control. The present study demonstrated that porcine colostral exosomes could increase the Tc cell proportion in the peripheral blood of suckling piglets, with the underlying mechanism believed to be the stimulation of IL-2 production in PBMCs via endocytosis. Moreover, our results suggested that porcine colostral exosomes were involved in the development of cellular immunity in suckling piglets.
RESUMO
Neonatal calves are highly susceptible to infectious disorders including diarrhea. Therefore, epithelial innate immunity, including antimicrobial peptides/proteins (AMPs), is important during the early stage of their lives. Chemerin, a multifunctional protein that was originally identified as a chemokine, possesses a potent antimicrobial activity. The present study investigated the expression levels of chemerin in the gastrointestinal (GI) tract of growing calves. Chemerin and its coding gene, retinoic acid receptor responder protein 2 (RARRES2), were highly expressed in duodenum, jejunum, and ileum compared with other parts of the GI tract. Immunohistochemistry demonstrated that chemerin-producing cells were localized in the crypt of the intestinal mucosa. Finally, the expression level of RARRES2 was higher compared with those of other major AMPs in duodenum, although it was lower compared with that of enteric ß-defensin but mostly higher than those of other AMPs in jejunum and ileum at various ages in calves. The expression levels of RARRES2 were not influenced by the age of calves in duodenum and jejunum, whereas a higher expression level of RARRES2 in ileum was observed in younger calves. This study revealed that chemerin is produced in the small intestine of calves and has the potential to contribute to the gut epithelial barrier system.
Assuntos
Anti-Infecciosos , Mucosa Intestinal , Animais , Bovinos , Íleo , Intestino Delgado , JejunoRESUMO
Bacterial colonization in the rumen of pre-weaned ruminants is important for their growth and post-weaning productivity. This study evaluated the effects of oral fiber administration during the pre-weaning period on the development of rumen microbiota from pre-weaning to the first lactation period. Twenty female calves were assigned to control and treatment groups (n = 10 each). Animals in both groups were reared using a standard feeding program throughout the experiment, except for oral fiber administration (50-100 g/day/animal) from 3 days of age until weaning for the treatment group. Rumen content was collected during the pre-weaning period, growing period, and after parturition. Amplicon sequencing of the 16S rRNA gene revealed that oral fiber administration facilitated the early establishment of mature rumen microbiota, including a relatively higher abundance of Prevotella, Shuttleworthia, Mitsuokella, and Selenomonas. The difference in the rumen microbial composition between the dietary groups was observed even 21 days after parturition, with a significantly higher average milk yield in the first 30 days of lactation. Therefore, oral fiber administration to calves during the pre-weaning period altered rumen microbiota, and its effect might be long-lasting until the first parturition.
Assuntos
Microbiota , Rúmen , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Fibras na Dieta , Feminino , Lactação , Leite , RNA Ribossômico 16S/genética , Rúmen/microbiologia , DesmameRESUMO
The Illumina MiSeq platform has been widely used as a standard method for studying the rumen microbiota. However, the low resolution of taxonomic identification is the only disadvantage of MiSeq amplicon sequencing, as it targets a part of the 16S rRNA gene. In the present study, we performed three experiments to establish a high-resolution and high-throughput rumen microbial profiling approach using a combination of MinION platform and buccal swab sample, which is a proxy for rumen contents. In experiment 1, rumen contents and buccal swab samples were collected simultaneously from cannulated cattle (n = 6) and used for microbiota analysis using three different analytical workflows: amplicon sequencing of the V3-V4 region of the 16S rRNA gene using MiSeq and amplicon sequencing of near full-length 16S rRNA gene using MinION or PacBio Sequel II. All reads derived from the MinION and PacBio platforms were classified at the species-level. In experiment 2, rumen fluid samples were collected from beef cattle (n = 28) and used for 16S rRNA gene amplicon sequencing using the MinION platform to evaluate this sequencing platform for rumen microbiota analysis. We confirmed that the MinION platform allowed species-level taxa assignment for the predominant bacterial groups, which were previously identified at the family- and genus-level using the MiSeq platform. In experiment 3, buccal swab samples were collected from beef cattle (n = 30) and used for 16S rRNA gene amplicon sequencing using the MinION platform to validate the applicability of a combination of the MinION platform and buccal swab samples for rumen microbiota analysis. The distribution of predominant bacterial taxa in the buccal swab samples was similar to that in the rumen samples observed in experiment 2. Based on these results, we concluded that the combination of the MinION platform and buccal swab samples may be potentially applied for rumen microbial analysis in large-scale studies.
RESUMO
The rumen microbiota comprises a vast range of bacterial taxa, which may affect the production of high-quality meat in Japanese Black cattle. The aim of this study was to identify core rumen microbiota in rumen fluid samples collected from 74 Japanese Black cattle raised under different dietary conditions using 16S rRNA gene amplicon sequencing. In the rumen of fattening Japanese Black cattle, 10 bacterial taxa, showing >1% average relative abundance and >95% prevalence, irrespective of the dietary conditions and the fattening periods, were identified as the core rumen bacterial taxa, which accounted for approximately 80% of the rumen microbiota in Japanese Black cattle. Additionally, population dynamics of the core rumen bacterial taxa revealed two distinct patterns: Prevotella spp. and unclassified Bacteroidales decreased in the mid-fattening period, whereas unclassified Clostridiales, unclassified Ruminococcaceae, Ruminococcus spp., and unclassified Christensenellaceae increased during the same period. Therefore, the present study reports the wide distribution of the core rumen bacterial taxa in Japanese Black cattle, and the complementary nature of the population dynamics of these core taxa, which may ensure stable rumen fermentation during the fattening period.
Assuntos
Bactérias , Rúmen , Animais , Bactérias/genética , Bovinos , Dieta , Dinâmica Populacional , RNA Ribossômico 16S/genéticaRESUMO
Trehalose, a nonreducing disaccharide consisting of d-glucose with α,α-1,1 linkage, was evaluated as a functional material to improve the gut environment in preweaned calves. In experiment 1, 173 calves were divided into two groups; the trehalose group was fed trehalose at 30 g/animal/d with milk replacer during the suckling period, and the control group was fed nonsupplemented milk replacer. Medication frequency was lower in the trehalose group (P < 0.05). In experiment 2, calves (n = 20) were divided into two groups (control group [n = 10] and trehalose group [n = 10]) based on their body weight and reared under the same feeding regimens as in experiment 1. Fresh feces were collected from individual animals at the beginning of the trial (average age 11 d), 3 wk after trehalose feeding (experimental day 22), and 1 d before weaning, and the fecal score was recorded daily. Fecal samples were analyzed for fermentation parameters and microbiota. The fecal score was significantly lower in the trehalose group than in the control group in the early stage (at an age of 14 to 18 d; P < 0.05) of the suckling period. Calves fed trehalose tended to have a higher proportion of fecal butyrate on day 22 than calves in the control group (P = 0.08). Population sizes of Clostridium spp. were significantly lower (P = 0.036), whereas those of Dialister spp. and Eubacterium spp. tended to be higher in the feces of calves in the trehalose group on day 22 (P = 0.060 and P = 0.083). These observations indicate that trehalose feeding modulated the gut environment and partially contributed to the reduction in medication frequency observed in experiment 1.
Assuntos
Doenças dos Bovinos/epidemiologia , Diarreia/veterinária , Fezes/microbiologia , Microbiota , Leite , Trealose/administração & dosagem , Ração Animal/análise , Animais , Peso Corporal , Bovinos , Diarreia/epidemiologia , Dieta/veterinária , Suplementos Nutricionais , Incidência , DesmameRESUMO
Ion channels have recently attracted attention as potential mediators of skin disease. Here, we explored the consequences of genetically encoded induction of the cell volume-regulating Ca2+-activated KCa3.1 channel (Kcnn4) for murine epidermal homeostasis. Doxycycline-treated mice harboring the KCa3.1+-transgene under the control of the reverse tetracycline-sensitive transactivator (rtTA) showed 800-fold channel overexpression above basal levels in the skin and solid KCa3.1-currents in keratinocytes. This overexpression resulted in epidermal spongiosis, progressive epidermal hyperplasia and hyperkeratosis, itch and ulcers. The condition was accompanied by production of the pro-proliferative and pro-inflammatory cytokines, IL-ß1 (60-fold), IL-6 (33-fold), and TNFα (26-fold) in the skin. Treatment of mice with the KCa3.1-selective blocker, Senicapoc, significantly suppressed spongiosis and hyperplasia, as well as induction of IL-ß1 (-88%) and IL-6 (-90%). In conclusion, KCa3.1-induction in the epidermis caused expression of pro-proliferative cytokines leading to spongiosis, hyperplasia and hyperkeratosis. This skin condition resembles pathological features of eczematous dermatitis and identifies KCa3.1 as a regulator of epidermal homeostasis and spongiosis, and as a potential therapeutic target.
Assuntos
Eczema/genética , Epiderme/patologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Ceratose/genética , Pele/metabolismo , Transgenes , Acetamidas/farmacologia , Animais , Citocinas/metabolismo , Doxiciclina/farmacologia , Eczema/tratamento farmacológico , Feminino , Homeostase/genética , Hiperplasia/tratamento farmacológico , Hiperplasia/genética , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/antagonistas & inibidores , Queratinócitos/metabolismo , Ceratose/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transativadores/metabolismo , Compostos de Tritil/farmacologiaRESUMO
Abstract: The epithelial intermediate-conductance calcium/calmodulin-regulated KCa3.1 channel is considered to be a regulator of intestine function by controlling chloride secretion and water/salt balance. Yet, little is known about the functional importance of KCa3.1 in the intestinal epithelium in vivo. Our objective was to determine the impact of epithelial-specific inducible overexpression of a KCa3.1 transgene (KCa3.1+) and of inducible suppression (KCa3.1-) on intestinal homeostasis and function in mice. KCa3.1 overexpression in the duodenal epithelium of doxycycline (DOX)-treated KCa3.1+ mice was 40-fold above the control levels. Overexpression caused an inflated duodenum and doubling of the chyme content. Histology showed conserved architecture of crypts, villi, and smooth muscle. Unaltered proliferating cell nuclear antigen (PCNA) immune reactivity and reduced amounts of terminal deoxynucleotide transferase mediated X-dUTP nick end labeling (TUNEL)-positive apoptotic cells in villi indicated lower epithelial turnover. Myography showed a reduction in the frequency of spontaneous propulsive muscle contractions with no change in amplitude. The amount of stool in the colon was increased and the frequency of colonic contractions was reduced in KCa3.1+ animals. Senicapoc treatment prevented the phenotype. Suppression of KCa3.1 in DOX-treated KCa3.1- mice caused no overt intestinal phenotype. In conclusion, inducible KCa3.1 overexpression alters intestinal functions by increasing the chyme content and reducing spontaneous contractions and epithelial apoptosis. Induction of epithelial KCa3.1 can play a mechanistic role in the process of adaptation of the intestine.
Assuntos
Duodeno/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Mucosa Intestinal/fisiologia , Animais , Digestão , Duodeno/ultraestrutura , Deleção de Genes , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Mucosa Intestinal/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular , Transgenes , Regulação para CimaRESUMO
BACKGROUND: Impaired microvascular function leads to a poor outcome in a variety of medical conditions. Our aim was to determine whether vasodilator responses to acetylcholine (Ach) are impaired in human omental arterioles from patients with severe trauma. MATERIALS AND METHODS: Patients with massive blood loss and severe shock requiring damage control procedures were included. Tissues were collected at the first (FEL) and the second explorative laparotomy (SEL). Control tissues were collected from nontrauma patients. Freshly isolated 50-200-µm-diameter omental arterioles were analysed using videomicroscopy. Dihydroethidine and DCF-DA fluorescence were used to assess reactive oxygen species (ROS) production. MnTBAP was used to determine the contribution of excess vascular superoxide contribution to endothelial dysfunction. RESULTS: After constriction (30-50%) with endothelin-1, dilation to graded doses of Ach (10-9 -10-4 M) was greater in control vessels compared to FEL and SEL (max dilation at 10-4 M (MD) = 25 ± 3%, n = 8; and 59 ± 8%, n = 8, respectively, and controls MD = 93 ± 10%, n = 6, P < 0·05). Fluorescence imaging of ROS production showed significant increases in superoxide (225·46 ± 12·86; 215·77 ± 10·75 vs. 133·75 ± 7·26, arbitrary units; P < 0·05) and peroxide-related ROS (240·8 ± 20·42; 234·59 ± 28·86, vs. 150·78 ± 15·65, arbitrary units; P < 0·05), in FEL and SEL microvessels compared to control, respectively. FEL pretreated with MnTBAP demonstrated significant improvement in Ach-induced vasodilation (25·5 ± 3·0% vs. 79·5 ± 8·2%; P < 0·05). CONCLUSIONS: Severe shock associated with microvascular endothelial dysfunction enhances production of ROS in human omental tissues. The altered flow regulation may contribute to a mismatch between local blood supply and demand, exacerbating abnormal tissue perfusion and function.
Assuntos
Acetilcolina/farmacologia , Arteríolas/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Microvasos/efeitos dos fármacos , Omento/irrigação sanguínea , Choque Hemorrágico/fisiopatologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Criança , Endotelina-1/farmacologia , Feminino , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Espécies Reativas de Oxigênio/metabolismo , Choque Hemorrágico/etiologia , Choque Hemorrágico/metabolismo , Ferimentos e Lesões/complicações , Adulto JovemRESUMO
The present study examined the level of generation of reactive oxygen species (ROS) and roles of inactivation of the phosphatase PTEN and the PI3K/Akt signaling pathway in response to an increase in intramural pressure-induced myogenic cerebral arterial constriction. Step increases in intraluminal pressure of cannulated cerebral arteries induced myogenic constriction and concomitant formation of superoxide (O2 (.-)) and its dismutation product hydrogen peroxide (H2O2) as determined by fluorescent HPLC analysis, microscopic analysis of intensity of dihydroethidium fluorescence and attenuation of pressure-induced myogenic constriction by pretreatment with the ROS scavenger 4,hydroxyl-2,2,6,6-tetramethylpiperidine1-oxyl (tempol) or Mito-tempol or MitoQ in the presence or absence of PEG-catalase. An increase in intraluminal pressure induced oxidation of PTEN and activation of Akt. Pharmacological inhibition of endogenous PTEN activity potentiated pressure-dependent myogenic constriction and caused a reduction in NPo of a 238 pS arterial KCa channel current and an increase in [Ca(2+)]i level in freshly isolated cerebral arterial muscle cells (CAMCs), responses that were attenuated by Inhibition of the PI3K/Akt pathway. These findings demonstrate an increase in intraluminal pressure induced increase in ROS production triggered redox-sensitive signaling mechanism emanating from the cross-talk between oxidative inactivation of PTEN and activation of the PI3K/Akt signaling pathway that involves in the regulation of pressure-dependent myogenic cerebral arterial constriction.
Assuntos
Artéria Cerebral Média/metabolismo , Músculo Liso Vascular/metabolismo , Estresse Oxidativo , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais , Animais , Cálcio/metabolismo , Catalase/farmacologia , Ativação Enzimática/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Masculino , Artéria Cerebral Média/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Oxirredução , PTEN Fosfo-Hidrolase/antagonistas & inibidores , Polietilenoglicóis/farmacologia , Canais de Potássio Cálcio-Ativados/metabolismo , Pressão , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Superóxidos/metabolismoRESUMO
In endothelial cells (ECs), Ca²âº-activated K⺠channels KCa2.3 and KCa3.1 play a crucial role in the regulation of arterial tone via producing NO and endothelium-derived hyperpolarizing factors. Since a rise in intracellular Ca²âº levels and activation of p300 histone acetyltransferase are early EC responses to laminar shear stress (LS) for the transcriptional activation of genes, we examined the role of Ca²âº/calmodulin-dependent kinase kinase (CaMKK), the most upstream element of a Ca²âº/calmodulin-kinase cascade, and p300 in LS-dependent regulation of KCa2.3 and KCa3.1 in ECs. Exposure to LS (15 dyn/cm²) for 24 h markedly increased KCa2.3 and KCa3.1 mRNA expression in cultured human coronary artery ECs (3.2 ± 0.4 and 45 ± 10 fold increase, respectively; P < 0.05 vs. static condition; n = 8-30), whereas oscillatory shear (OS; ± 5 dyn/cm² × 1 Hz) moderately increased KCa3.1 but did not affect KCa2.3. Expression of KCa2.1 and KCa2.2 was suppressed under both LS and OS conditions, whereas KCa1.1 was slightly elevated in LS and unchanged in OS. Inhibition of CaMKK attenuated LS-induced increases in the expression and channel activity of KCa2.3 and KCa3.1, and in phosphorylation of Akt (Ser473) and p300 (Ser1834). Inhibition of Akt abolished the upregulation of these channels by diminishing p300 phosphorylation. Consistently, disruption of the interaction of p300 with transcription factors eliminated the induction of these channels. Thus a CaMKK/Akt/p300 cascade plays an important role in LS-dependent induction of KCa2.3 and KCa3.1 expression, thereby regulating EC function and adaptation to hemodynamic changes.
Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Proteína p300 Associada a E1A/metabolismo , Células Endoteliais/enzimologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Mecanotransdução Celular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Adaptação Fisiológica , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Ativação Enzimática , Hemodinâmica , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Mecanotransdução Celular/efeitos dos fármacos , Potenciais da Membrana , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , RNA Mensageiro/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Estresse Mecânico , Fatores de Tempo , Regulação para CimaRESUMO
The intermediate conductance calcium-activated potassium channel KCa3.1 contributes to a variety of cell activation processes in pathologies such as inflammation, carcinogenesis, and vascular remodeling. We examined the electrophysiological and transcriptional mechanisms by which KCa3.1 regulates vascular smooth muscle cell (VSMC) proliferation. Platelet-derived growth factor-BB (PDGF)-induced proliferation of human coronary artery VSMCs was attenuated by lowering intracellular Ca(2+) concentration ([Ca(2+)]i) and was enhanced by elevating [Ca(2+)]i. KCa3.1 blockade or knockdown inhibited proliferation by suppressing the rise in [Ca(2+)]i and attenuating the expression of phosphorylated cAMP-response element-binding protein (CREB), c-Fos, and neuron-derived orphan receptor-1 (NOR-1). This antiproliferative effect was abolished by elevating [Ca(2+)]i. KCa3.1 overexpression induced VSMC proliferation, and potentiated PDGF-induced proliferation, by inducing CREB phosphorylation, c-Fos, and NOR-1. Pharmacological stimulation of KCa3.1 unexpectedly suppressed proliferation by abolishing the expression and activity of KCa3.1 and PDGF ß-receptors and inhibiting the rise in [Ca(2+)]i. The stimulation also attenuated the levels of phosphorylated CREB, c-Fos, and cyclin expression. After KCa3.1 blockade, the characteristic round shape of VSMCs expressing high l-caldesmon and low calponin-1 (dedifferentiation state) was maintained, whereas KCa3.1 stimulation induced a spindle-shaped cellular appearance, with low l-caldesmon and high calponin-1. In conclusion, KCa3.1 plays an important role in VSMC proliferation via controlling Ca(2+)-dependent signaling pathways, and its modulation may therefore constitute a new therapeutic target for cell proliferative diseases such as atherosclerosis.
Assuntos
Sinalização do Cálcio/fisiologia , Proliferação de Células , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Indutores da Angiogênese/farmacologia , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Becaplermina , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-sis/farmacologia , CalponinasRESUMO
OBJECTIVE: Adenosine dilates human coronary arteries by activating potassium channels in an endothelial cell-independent manner. Cell surface ecto-5'-nucleotidase (CD73) rapidly dephosphorylates extracellular adenosine 5'-monophosphate to adenosine. We tested the hypothesis that coronary vasodilation to adenine nucleotides is mediated by an endothelial CD73-dependent, extracellular production of adenosine that acts as an endothelium-derived hyperpolarizing factor. METHODS AND RESULTS: Videomicroscopy showed that adenine nucleotides, but not inosine, potently dilated and hyperpolarized human coronary arteries independent of nitric oxide, prostacyclin, and classical endothelium-derived hyperpolarizing factors, whereas endothelial denudation, adenosine receptor antagonism, adenosine deaminase, or CD73 blockers reduced vasodilations. Liquid chromatography-electrospray ionization-mass spectrometry revealed adenosine accumulation in perfusates from arteries in the presence of adenosine 5'-diphosphate. CD73 was localized on the cell surface of endothelial cells, but not of vascular smooth muscle cells, and its deficiency suppressed vasodilation of mouse coronary arteries to adenine nucleotides and augmented vasodilation to adenosine. Adenosine dose-dependently dilated and hyperpolarized human coronary arteries to a similar extent as adenosine 5'-diphosphate. CONCLUSIONS: Coronary vasodilation to adenine nucleotides is associated with endothelial CD73-dependent production of extracellular adenosine that acts as an endothelium-derived hyperpolarizing factor by relaxing and hyperpolarizing underlying vascular smooth muscle cells via activating adenosine receptors. Thus, CD73 is a novel endothelium-derived hyperpolarizing factor synthase in human and mouse coronary arteries.
Assuntos
5'-Nucleotidase/metabolismo , Nucleotídeos de Adenina/farmacologia , Adenosina/metabolismo , Fatores Biológicos/metabolismo , Vasos Coronários/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , 5'-Nucleotidase/antagonistas & inibidores , 5'-Nucleotidase/deficiência , 5'-Nucleotidase/genética , Nucleotídeos de Adenina/metabolismo , Adenosina Desaminase/metabolismo , Animais , Cromatografia Líquida , Vasos Coronários/enzimologia , Relação Dose-Resposta a Droga , Células Endoteliais/enzimologia , Inibidores Enzimáticos/farmacologia , Feminino , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/deficiência , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Nucleotídeos de Inosina/farmacologia , Masculino , Potenciais da Membrana , Camundongos , Camundongos Knockout , Microscopia de Vídeo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Antagonistas de Receptores Purinérgicos P1/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Vasodilatadores/metabolismoRESUMO
BACKGROUND: The calcium-activated potassium channel KCa3.1 is critically involved in T-cell activation as well as in the proliferation of smooth muscle cells and fibroblasts. We sought to investigate whether KCa3.1 contributes to the pathogenesis of obliterative airway disease (OAD) and whether knockout or pharmacologic blockade would prevent the development of OAD. METHODS: Tracheas from CBA donors were heterotopically transplanted into the omentum of C57Bl/6J wild-type or KCa3.1 mice. C57Bl/6J recipients were either left untreated or received the KCa3.1 blocker TRAM-34 (120 mg/kg/day). Histopathology and immunologic assays were performed on postoperative day 5 or 28. RESULTS: Subepithelial T-cell and macrophage infiltration on postoperative day 5, as seen in untreated allografts, was significantly reduced in the KCa3.1 and TRAM-34 groups. Also, systemic Th1 activation was significantly and Th2 mildly reduced by KCa3.1 knockout or blockade. After 28 days, luminal obliteration of tracheal allografts was reduced from 89%±21% in untreated recipients to 53%±26% (P=0.010) and 59%±33% (P=0.032) in KCa3.1 and TRAM-34-treated animals, respectively. The airway epithelium was mostly preserved in syngeneic grafts, mostly destroyed in the KCa3.1 and TRAM-34 groups, and absent in untreated allografts. Allografts triggered an antibody response in untreated recipients, which was significantly reduced in KCa3.1 animals. KCa3.1 was detected in T cells, airway epithelial cells, and myofibroblasts. TRAM-34 dose-dependently suppressed proliferation of wild-type C57B/6J splenocytes but did not show any effect on KCa3.1 splenocytes. CONCLUSIONS: Our findings suggest that KCa3.1 channels are involved in the pathogenesis of OAD and that KCa3.1 blockade holds promise to reduce OAD development.
Assuntos
Bronquiolite Obliterante/prevenção & controle , Terapia Genética , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Pirazóis/farmacologia , Traqueia/efeitos dos fármacos , Animais , Bronquiolite Obliterante/genética , Bronquiolite Obliterante/imunologia , Bronquiolite Obliterante/metabolismo , Bronquiolite Obliterante/patologia , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , ELISPOT , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/deficiência , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Isoanticorpos/sangue , Ativação Linfocitária/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th1/metabolismo , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Células Th2/metabolismo , Fatores de Tempo , Traqueia/imunologia , Traqueia/metabolismo , Traqueia/patologia , Traqueia/transplanteRESUMO
The extracellular K(+) concentration ([K(+)](o)) has been proposed to link cardiac metabolism with coronary perfusion and arrhythmogenesis, particularly during ischemia. Several animal studies have also supported K(+) as an EDHF that activates Na(+)-K(+)-ATPase and/or inwardly rectifying K(+) (K(ir)) channels. Therefore, we examined the vascular reactivity of human coronary arterioles (HCAs) to small elevations in [K(+)](o), the influence of risk factors for coronary disease, and the role of K(+) as an EDHF. Changes in the internal diameter of HCAs were recorded with videomicroscopy. Most vessels dilated to increases in [K(+)](o) with a maximal dilation of 55 ± 6% primarily at 12.5-20.0 mM KCl (n = 38, average: 16 ± 1 mM). Ouabain, a Na(+)-K(+)-ATPase inhibitor, alone reduced the dilation, and the addition of Ba(2+), a K(ir) channel blocker, abolished the remaining dilation, whereas neither endothelial denudation nor Ba(2+) alone reduced the dilation. Multivariate analysis revealed that cigarette smoking was the only risk factor associated with impaired dilation to K(+). Ouabain significantly reduced the vasodilation in HCAs from subjects without cigarette smoking but not in those with smoking. Cigarette smoking downregulated the expression of the Na(+)-K(+)-ATPase catalytic α(1)-subunit but not Kir2.1 in the vessels. Ouabain abolished the dilation in endothelium-denuded vessels to a same extent to that with the combination of ouabain and Ba(2+) in endothelium-intact vessels, whereas neither ouabain nor ouabain plus Ba(2+) reduced EDHF-mediated dilations to bradykinin and ADP. A rise in [K(+)](o) dilates HCAs primarily via the activation of Na(+)-K(+)-ATPase in vascular smooth muscle cells with a considerable contribution of K(ir) channels in the endothelium, indicating that [K(+)](o) may modify coronary microvascular resistance in humans. Na(+)-K(+)-ATPase activity is impaired in subjects who smoke, possibly contributing to dysregulation of the coronary microcirculation, excess ischemia, and arrhythmogenesis in those subjects. K(+) does not likely serve as an EDHF in the human coronary arteriolar dilation to bradykinin and ADP.