Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Int J Mol Sci ; 24(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37894911

RESUMO

RNA-based therapy has been an expanding area of clinical research since the COVID-19 outbreak. Often, its comparison has been made to DNA-based gene therapy, such as adeno-associated virus- and lentivirus-mediated therapy. These DNA-based therapies show persistent expression, with maximized therapeutic efficacy. However, accumulating data indicate that proper control of gene expression is occasionally required. For example, in cancer immunotherapy, cytokine response syndrome is detrimental for host animals, while excess activation of the immune system induces supraphysiological cytokines. RNA-based therapy seems to be a rather mild therapy, and it has room to fit unmet medical needs, whereas current DNA-based therapy has unclear issues. This review focused on RNA-based therapy for cancer immunotherapy, hematopoietic disorders, and inherited disorders, which have received attention for possible clinical applications.


Assuntos
Neoplasias , RNA , Animais , RNA Nuclear Pequeno/genética , Terapia Genética , DNA , Neoplasias/genética , Neoplasias/terapia
2.
Gels ; 9(4)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37102933

RESUMO

Organ transplantation is the first and most effective treatment for missing or damaged tissues or organs. However, there is a need to establish an alternative treatment method for organ transplantation due to the shortage of donors and viral infections. Rheinwald and Green et al. established epidermal cell culture technology and successfully transplanted human-cultured skin into severely diseased patients. Eventually, artificial cell sheets of cultured skin were created, targeting various tissues and organs, including epithelial sheets, chondrocyte sheets, and myoblast cell sheets. These sheets have been successfully used for clinical applications. Extracellular matrix hydrogels (collagen, elastin, fibronectin, and laminin), thermoresponsive polymers, and vitrified hydrogel membranes have been used as scaffold materials to prepare cell sheets. Collagen is a major structural component of basement membranes and tissue scaffold proteins. Collagen hydrogel membranes (collagen vitrigel), created from collagen hydrogels through a vitrification process, are composed of high-density collagen fibers and are expected to be used as carriers for transplantation. In this review, the essential technologies for cell sheet implantation are described, including cell sheets, vitrified hydrogel membranes, and their cryopreservation applications in regenerative medicine.

3.
Curr Issues Mol Biol ; 45(2): 1568-1569, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36826045

RESUMO

This Special Issue provides an overview of the "Effects of Nanoparticles on Living Organisms" [...].

4.
Biopreserv Biobank ; 21(6): 631-634, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36827090

RESUMO

In recent years, cells provided by cell banks and medical facilities have been used for cell therapy, regenerative therapy, and fundamental research. Cryopreservation is an effective means of maintaining stable cell quality over a long period of time. The slow freezing method is most suitable for processing many human cells isolated simultaneously from organs and tissues, but it is necessary to develop a freezing solution for this method. In this study, we report the successful development of a dimethyl sulfoxide (DMSO)-free freezing medium for differentiated neuronal cells. Neuronal differentiation results in the differentiation of undifferentiated SK-N-SH cells into neuronal cells. A basic freezing medium (BFM) was prepared using Dulbecco's modified Eagle's medium, 1 M maltose, and 1% sericin as the essential ingredients, supplemented with 5%-40% propylene glycol (PG). Each BFM supplemented with 5%-40% PG was evaluated in undifferentiated cells. After thawing, BFM supplemented with 10% and 20% PG were 83% and 88% viable, respectively. There was no significant difference between the 10% and 20% PG groups. However, a significant difference was observed when the concentration of PG in the BFM decreased by 5% (5% PG vs. 10% PG; p = 0.0026). Each DMSO-free BFM was evaluated using differentiated neuronal cells. There was no significant difference between the 10% PG BFM and stem-CB-free groups. Viability was significantly different in the 10% glycerol BFM (4.8%) and 10% PG BFM (45%) (p = 0.028). The differentiated cells with 10% PG BFM showed higher adherence to culture dishes than those with 10% glycerol BFM. These results show that BFM containing PG was effective in differentiating neuronal cells. DMSO affects the central nervous system at low concentrations. This report indicates that DMSO is unsuitable for neuronal cells with multipotent differentiation potential. Therefore, it is essential for cell banking and transplantation medicine services to select appropriate cell freezing media.


Assuntos
Dimetil Sulfóxido , Glicerol , Humanos , Dimetil Sulfóxido/farmacologia , Criopreservação/métodos , Congelamento , Diferenciação Celular , Sobrevivência Celular , Crioprotetores/farmacologia
5.
J Med Ultrason (2001) ; 50(2): 121-129, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36633723

RESUMO

PURPOSE: Although cellular immunotherapy is expected as a new cancer treatment, its therapeutic efficiency is limited in solid tumors, because most cells return to the bloodstream rather than adhere to the target site. Therefore, we are motivated to develop a technique to concentrate the cells in the blood flow using active control of bubble-surrounded cells under ultrasound exposure considering both aspects of cell controllability and viability. METHODS: We prepared a lipid bubble conjugating ligand to adhere to the surface of the T-cells. First, we evaluated the cell controllability by retaining the cells on a wall of an artificial blood vessel through continuous ultrasound exposure. Next, we investigated the cell viability under ultrasound exposure in a suspension with various bubble concentrations. RESULTS: We estimated the concentration of bubbles when the adhesion to the cell surface was saturated. Then, we evaluated the cell viability with various conditions of ultrasound exposure and bubble concentrations. However, it was confirmed that cell damage occurred under conditions that achieved proper control of the cells. Therefore, we exposed the cells to burst waves to reduce the applied ultrasound intensity. Consequently, the significant increase in cell viability was confirmed to be inversely proportional to the duty ratio. CONCLUSION: To retain cells on a vessel wall, determining the appropriate ultrasound condition including sound pressure and waveform is important to maintain cell viability.


Assuntos
Som , Linfócitos T , Humanos
6.
Biomater Adv ; 146: 213283, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36640525

RESUMO

As an organizer of multi-molecular membrane complexes, the tetraspanin CD9 has been implicated in a number of biological processes, including cancer metastasis, and is a candidate therapeutic target. Here, we evaluated the suppressive effects of an eight-mer CD9-binding peptide (CD9-BP) on cancer cell metastasis and its mechanisms of action. CD9-BP impaired CD9-related functions by adversely affecting the formation of tetraspanin webs-networks composed of CD9 and its partner proteins. The anti-cancer metastasis effect of CD9-BP was evidenced by the in vitro inhibition of cancer cell migration and invasion as well as exosome secretion and uptake, which are essential processes during metastasis. Finally, using a mouse model, we showed that CD9-BP reduced lung metastasis in vivo. These findings provide insight into the mechanism by which CD9-BP inhibits CD9-dependent functions and highlight its potential application as an alternative therapeutic nano-biomaterial for metastatic cancers.


Assuntos
Neoplasias , Oligopeptídeos , Tetraspanina 29 , Humanos , Neoplasias/patologia , Neoplasias/terapia , Tetraspanina 29/metabolismo , Metástase Neoplásica , Oligopeptídeos/metabolismo , Oligopeptídeos/uso terapêutico
7.
Materials (Basel) ; 15(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36363415

RESUMO

Establishing a rapid in vitro evaluation system for drug screening is essential for the development of new drugs. To reproduce tissues/organs with functions closer to living organisms, in vitro three-dimensional (3D) culture evaluation using microfabrication technology has been reported in recent years. Culture on patterned substrates with controlled hydrophilic and hydrophobic regions (Cell-ableTM) can create 3D liver models (miniature livers) with liver-specific Disse luminal structures and functions. MRI contrast agents are widely used as safe and minimally invasive diagnostic methods. We focused on anionic polysaccharide magnetic iron oxide nanoparticles (Resovist®) and synthesized the four types of nanoparticle derivatives with different properties. Cationic nanoparticles (TMADM) can be used to label target cells in a short time and have been successfully visualized in vivo. In this study, we examined the morphology of various nanoparticles. The morphology of various nanoparticles showed relatively smooth-edged spherical shapes. As 3D liver models, we prepared primary hepatocyte-endothelial cell heterospheroids. The toxicity, CYP3A, and albumin secretory capacity were evaluated in the heterospheroids labeled with various nanoparticles. As the culture period progressed, the heterospheroids labeled with anionic and cationic nanoparticles showed lower liver function than non-labeled heterospheroids. In the future, there is a need to improve the method of creation of artificial 3D liver or to design a low-invasive MRI contrast agent to label the artificial 3D liver.

8.
Placenta ; 128: 73-82, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088840

RESUMO

INTRODUCTION: Maternal glucocorticoid exposure increases the risk of preterm delivery; however, the association between glucocorticoids and preterm premature rupture of membranes (pPROM)-a direct cause of preterm delivery-has rarely been investigated. METHODS: To examine this association, we evaluated the clinical data of patients with systemic lupus erythematosus (SLE). Mechanism analysis was performed in both human amnion-derived mesenchymal cells (as a model for fetal membranes) and the amnion from SLE patients. We characterized the effects of glucocorticoids on the amnion in both models through comprehensive gene expression profiling and by electric cell-substrate impedance sensing in the mesenchymal cells. RESULTS: The average glucocorticoid dose in cases with pPROM (13.3 mg/day, n = 10) was significantly higher than in those without pPROM (8.5 mg/day, n = 65; P < 0.01) among pregnant patients with well-controlled SLE (SLEDAI <4, n = 75); however, we did not observe a statistically significant difference in it between cases with or without chorioamnionitis. Glucocorticoid-treated human amnion mesenchymal cells showed decreased electric resistance between cells, indicating increased permeability. Differentially expressed genes upon glucocorticoid treatment were significantly enriched with cell adhesion-related genes. Among them, ITGA8 was strikingly induced in both the amnion mesenchymal cells and in amnion derived from patients with SLE. DISCUSSION: We observed an association between glucocorticoids and pPROM with non-infectious etiology. Our findings indicate that glucocorticoids increase amnion permeability and modulate cell-adhesion related genes. ITGA8 represents a primary molecule that triggers pPROM through fibrotic remodeling and preventing resealing of the rupture site in fetal amnion.


Assuntos
Ruptura Prematura de Membranas Fetais , Glucocorticoides , Cadeias alfa de Integrinas , Lúpus Eritematoso Sistêmico , Nascimento Prematuro , Âmnio/metabolismo , Feminino , Ruptura Prematura de Membranas Fetais/metabolismo , Expressão Gênica , Glucocorticoides/efeitos adversos , Humanos , Recém-Nascido , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Gravidez , Nascimento Prematuro/metabolismo
9.
Regen Ther ; 19: 58-68, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35059480

RESUMO

The effective use of human-derived cells that are difficult to freeze, such as parenchymal cells and differentiated cells from stem cells, is crucial. A stable supply of damage-sensitive cells, such as differentiated neuronal cells, neurons, and glial cells can contribute considerably to cell therapy. We developed a serum-free freezing solution that is effective for the cryopreservation of differentiated neuronal cells. The quality of the differentiated and undifferentiated SK-N-SH cells was determined based on cell viability, live-cell recovery rate, and morphology of cultured cells, to assess the efficacy of the freezing solutions. The viability and recovery rate of the differentiated SK-N-SH neuronal cells were reduced by approximately 1.5-folds compared to that of the undifferentiated SK-N-SH cells. The viability and recovery rate of the differentiated SK-N-SH cells were remarkably different between the freezing solutions containing 10% DMSO and that containing 10% glycerol. Cryoprotectants such as fetal bovine serum (FBS), antifreeze proteins (sericin), and sugars (maltose), are essential for protecting against freeze damage in differentiated neuronal cells and parenchymal cells. Serum-free alternatives (sericin and maltose) could increase safety during cell transplantation and regenerative medicine. Considering these, we propose an effective freezing solution for the cryopreservation of neuronal cells.

10.
Langmuir ; 37(36): 10732-10740, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34464138

RESUMO

Plasma-treated poly(dimethylsiloxane) (PDMS)-supported lipid bilayers are used as functional tools for studying cell membrane properties and as platforms for biotechnology applications. Self-spreading is a versatile method for forming lipid bilayers. However, few studies have focused on the effect of plasma treatment on self-spreading lipid bilayer formation. In this paper, we performed lipid bilayer self-spreading on a PDMS surface with different treatment times. Surface characterization of PDMS treated with different treatment times is evaluated by AFM and SEM, and the effects of plasma treatment of the PDMS surface on lipid bilayer self-spreading behavior is investigated by confocal microscopy. The front-edge velocity of lipid bilayers increases with the plasma treatment time. By theoretical analyses with the extended-DLVO modeling, we find that the most likely cause of the velocity change is the hydration repulsion energy between the PDMS surface and lipid bilayers. Moreover, the growth behavior of membrane lobes on the underlying self-spreading lipid bilayer was affected by topography changes in the PDMS surface resulting from plasma treatment. Our findings suggest that the growth of self-spreading lipid bilayers can be controlled by changing the plasma treatment time.


Assuntos
Dimetilpolisiloxanos , Bicamadas Lipídicas , Propriedades de Superfície
11.
Chem Commun (Camb) ; 57(40): 4906-4909, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33870995

RESUMO

A CD9-binding peptide (RSHRLRLH), screened from EWI-2, was characterized, and its effect on cellular migration and invasion was evaluated. As CD9 protein is overexpressed in cancer cells and plays an important role in cellular migration, the CD9-binding peptide preferentially inhibited the migration of cancer cells. Unlike conventional antiproliferative drugs, this CD9-binding peptide is promising as a novel precision antimigratory agent for cancer therapeutics.


Assuntos
Peptídeos/farmacologia , Tetraspanina 29/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Peptídeos/química , Tetraspanina 29/genética
13.
Int J Mol Sci ; 21(22)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33227981

RESUMO

Hermaphroditic invertebrates and plants have a self-recognition system on the cell surface of sperm and eggs, which prevents their self-fusion and enhances non-self-fusion, thereby contributing to genetic variation. However, the system of sperm-egg recognition in mammals is under debate. To address this issue, we explored the role of major histocompatibility complex class I (MHC class I, also known as histocompatibility 2-Kb or H2-Kb and H2-Db in mice) antigens by analyzing H2-Kb-/-H2-Db-/-ß2-microglobulin (ß2M)-/- triple-knockout (T-KO) male mice with full fertility. T-KO sperm exhibited an increased sperm number in the perivitelline space of wild-type (WT) eggs in vitro. Moreover, T-KO sperm showed multiple fusion with zona pellucida (ZP)-free WT eggs, implying that the ability of polyspermy block for sperm from T-KO males was weakened in WT eggs. When T-KO male mice were intercrossed with WT female mice, the percentage of females in progeny increased. We speculate that WT eggs prefer fusion with T-KO sperm, more specifically X-chromosome-bearing sperm (X sperm), suggesting the presence of preferential (non-random) fertilization in mammals, including humans.


Assuntos
Fertilidade/genética , Antígenos de Histocompatibilidade Classe I/genética , Óvulo/metabolismo , Razão de Masculinidade , Interações Espermatozoide-Óvulo/genética , Espermatozoides/metabolismo , Animais , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Feminino , Fertilização in vitro , Regulação da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Óvulo/citologia , Contagem de Espermatozoides , Espermatozoides/citologia , Microglobulina beta-2/deficiência , Microglobulina beta-2/genética , Microglobulina beta-2/imunologia
14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2198-2201, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018443

RESUMO

Giant vesicles (GVs) are model cell membranes that function as tools for the study of cell membrane properties. Recently, researchers have been calling for GVs of specific sizes for use in studies with precise needs. In this paper, we report a method of forming GVs of specific sizes by using an agarose-swelling approach. The resulting GVs had a narrow size distribution and were successfully formed under physiological conditions.


Assuntos
Membrana Celular , Sefarose
16.
Lab Invest ; 100(4): 583-595, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31857692

RESUMO

Men and women become infertile with age, but the mechanism of declining male fertility, more specifically, the decrease in in sperm quality, is not well known. Citrate synthase (CS) is a core enzyme of the mitochondrial tricarboxylic acid (TCA) cycle, which directly controls cellular function. Extra-mitochondrial CS (eCS) is produced and abundant in the sperm head; however, its role in male fertility is unknown. We investigated the role of eCS in male fertility by producing eCs-deficient (eCs-KO) mice. The initiation of the first spike of Ca2+ oscillation was substantially delayed in egg fused with eCs-KO sperm, despite normal expression of sperm factor phospholipase C zeta 1. The eCs-KO male mice were initially fertile, but the fertility dropped with age. Metabolomic analysis of aged sperm revealed that the loss of eCS enhances TCA cycle in the mitochondria with age, presumably leading to depletion of extra-mitochondrial citrate. The data suggest that eCS suppresses age-dependent male infertility, providing insights into the decline of male fertility with age.


Assuntos
Envelhecimento/metabolismo , Sinalização do Cálcio/fisiologia , Citrato (si)-Sintase , Infertilidade Masculina/metabolismo , Espermatozoides , Animais , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Feminino , Infertilidade Masculina/fisiopatologia , Masculino , Metaboloma/fisiologia , Camundongos , Óvulo/metabolismo , Espermatozoides/enzimologia , Espermatozoides/metabolismo
17.
Lab Invest ; 99(2): 200-209, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30401958

RESUMO

Tetraspanin CD9 is essential for sperm-egg fusion and also contributes to uterine repair through microexosome formation. Microexosomes share CD9 with exosomes and are released from eggs and uterine epithelial cells. However, the mechanism for the formation of microexosomes remains unknown. To address this issue, we examined membrane localization and extracellular release of CD9 proteins using uterine epithelial cells and secretions in mice and humans. In mice, CD9 localized predominantly on the basal region of the plasma membrane and relocated to the apical region upon embryo implantation. Furthermore, extracellular CD9 proteins were detected in uterine secretions of mice and women undergoing infertility treatment, but were below detectable levels in supernatants of pluripotent stem cells. Ultrastructural analysis demonstrated that membrane projections were shortened and the number of mitochondria was reduced in uterine epithelial cells lacking Cd9 genes. Our results suggest that CD9 repositioning and release affect both membrane structures and mitochondrial state in the uterus, and contribute to female fertility.


Assuntos
Tetraspanina 29 , Útero , Animais , Secreções Corporais/química , Secreções Corporais/citologia , Linhagem Celular , Ciclo Estral , Exossomos/química , Exossomos/metabolismo , Feminino , Humanos , Infertilidade Feminina , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/química , Mitocôndrias/metabolismo , Tetraspanina 29/química , Tetraspanina 29/metabolismo , Tetraspanina 29/fisiologia , Útero/química , Útero/citologia , Útero/metabolismo , Útero/fisiologia
18.
Heliyon ; 4(11): e00944, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30480160

RESUMO

Mitochondria are the powerhouses of eukaryotic cells and their positioning contributes to fertilization and early developmental processes. We report that sperm fusion triggers Ca2+ oscillations and mitochondrial movement toward fused sperm (mitochondrial chemotaxis) in mouse eggs. Mitochondria functioned in Ca2+ storage and were colocalized with endoplasmic reticulum (ER) during Ca2+ oscillations. Mitochondria then moved toward the fused sperm. Sperm extracts lacking nuclei induced Ca2+ oscillations, but did not promote mitochondrial chemotaxis. Our results suggest that sperm fusion motivates Ca2+ oscillation-independent mitochondrial chemotaxis. This phenomenon indicates that egg mitochondria interact with sperm materials, presumably nuclear substances, and their network tethers egg and sperm nuclei at the early stage of zygote formation.

19.
Biochem Biophys Rep ; 15: 107-114, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30140750

RESUMO

Autophagic recycling of cell parts is generally termed as the opposite of cell death. Here, we explored the relation between cell death and autophagy by examining granulosa cell layers that control oocyte quality, which is important for the success of fertilization. Granulosa cell layers were collected from infertile women and morphologically divided into four types, viz., mature (MCCs), immature (ICCs), and dysmature cumulus cells (DCCs), and mural granulosa cells (MGCs). Microtubule-associated protein light chain 3 (LC3), which is involved in autophagosome formation, was expressed excessively in DCCs and MGCs, and their chromosomal DNA was highly fragmented. However, autophagy initiation was limited to MGCs, as indicated by the expression of membrane-bound LC3-II and autophagy-related protein 7 (ATG7), an enzyme that converts LC3-I to LC3-II. Although pro-LC3 was accumulated, autophagy was disabled in DCCs, resulting in cell death. Our results suggest the possibility that autophagy-independent accumulation of pro-LC3 proteins leads to the death of human granulosa cells surrounding the oocytes and presumably reduces oocyte quality and female fertility.

20.
Genes Cells ; 23(10): 904-914, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30144248

RESUMO

In bacteria, a polymer of inorganic phosphate (Pi) (inorganic polyphosphate; polyP) is enzymatically produced and consumed as an alternative phosphate donor for adenosine triphosphate (ATP) production to protect against nutrient starvation. In vertebrates, polyP has been dismissed as a "molecular fossil" due to the lack of any known physiological function. Here, we have explored its possible role by producing transgenic (TG) mice widely expressing Saccharomyces cerevisiae exopolyphosphatase 1 (ScPPX1), which catalyzes hydrolytic polyP degradation. TG mice were produced and displayed reduced mitochondrial respiration in muscles. In female TG mice, the blood concentration of lactic acid was enhanced, whereas ATP storage in liver and brain tissues was reduced significantly. Thus, we suggested that the elongation of polyP reduces the intracellular Pi concentration, suppresses anaerobic lactic acid production, and sustains mitochondrial respiration. Our results provide an insight into the physiological role of polyP in mammals, particularly in females.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Ácido Láctico/metabolismo , Fosfatos/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Respiração Celular/fisiologia , Escherichia coli/metabolismo , Fermentação , Ácido Láctico/análise , Ácido Láctico/sangue , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Oócitos/metabolismo , Polímeros , Polifosfatos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA