Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
iScience ; 26(10): 107448, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37720086

RESUMO

Multiple sclerosis (MS) is a leading disease that causes disability in young adults. We have previously shown that a DEAD-box RNA helicase Ddx54 binds to mRNA and protein isoforms of myelin basic protein (MBP) and that Ddx54 siRNA blocking abrogates oligodendrocyte migration and myelination. Herein, we show that MBP-driven Ddx54 knockout mice (Ddx54 fl/fl;MBP-Cre), after the completion of normal postnatal myelination, gradually develop abnormalities in behavioral profiles and learning ability, inner myelin sheath breakdown, loss of myelinated axons, apoptosis of oligodendrocytes, astrocyte and microglia activation, and they die within 7 months but show minimal peripheral immune cell infiltration. Myelin in Ddx54fl/fl;MBP-Cre is highly vulnerable to the neurotoxicant cuprizone and Ddx54 knockdown greatly impairs myelination in vitro. Ddx54 expression in oligodendrocyte-lineage cells decreased in corpus callosum of MS patients. Our results demonstrate that Ddx54 is indispensable for myelin homeostasis, and they provide a demyelinating disease model based on intrinsic disintegration of adult myelin.

2.
Microorganisms ; 11(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36838499

RESUMO

We report for the first time that ephedrine alkaloids-free Ephedra Herb extract (EFE) directly inhibits the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro and that the addition of EFE to the culture medium before viral infection reduces virus titers in the culture supernatant of SARS-CoV-2, including those of variant strains, by more than 99%, 24 h after infection. The addition of Ephedra Herb macromolecule condensed-tannin, which is the main active ingredient responsible for the anticancer, pain suppression, and anti-influenza effects of EFE, similarly suppressed virus production in the culture supernatant by 99% before infection and by more than 90% after infection. Since EFE does not have the side effects caused by ephedrine alkaloids, such as hypertension, palpitations, and insomnia, our results showed the potential of EFE as a safe therapeutic agent against coronavirus disease 2019.

3.
Xenobiotica ; 52(5): 511-519, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35855663

RESUMO

Kampo medicines are widely used in Japan; however, their potential to cause drug interactions still remains unclear and needs to be further investigated. The effects of goreisan on the P-glycoprotein (P-gp) and the cytochrome P-450 (CYP), which are associated with drug interactions, were investigated.The inhibitory effect of goreisan extract on P-gp was evaluated using a Caco-2 cell permeability assay. The results indicated that it inhibited P-gp function in a concentration-dependent manner.The inhibitory effect of three goreisan ingredients (alisol A, tumulosic acid, and (E)-cinnamic acid) on seven CYP isoforms was evaluated using human liver microsomes (HLM). Of these, tumulosic acid and (E)-cinnamic acid exhibited less than 16% inhibition at concentrations of 10 µmol/L against any of the CYP isoforms tested. Alisol A inhibited only CYP3A but showed no inhibitory effect with pre-incubation.These results indicate that goreisan extract has inhibitory activity against P-gp and that alisol A, a goreisan ingredient, exhibits an inhibitory effect on CYP3A. However, these are thought to be minor or negligible in vivo. Overall, these findings will be useful to evaluate possible drug interactions and provide support for the interpretation of future clinical drug-drug interaction studies involving goreisan.


Assuntos
Citocromo P-450 CYP3A , Medicamentos de Ervas Chinesas , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Células CACO-2 , Sistema Enzimático do Citocromo P-450 , Humanos , Microssomos Hepáticos
4.
Aging (Albany NY) ; 14(11): 4634-4652, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35660668

RESUMO

The ventral tegmental area (VTA), substantia nigra pars compacta (SNpc) and nucleus accumbens (NAc) are involved in the regulation of appetite and motivational behaviors. A traditional Japanese (Kampo) medicine, ninjin'yoeito (NYT), has been reported to improve decreased motivation and anorexia in patients with Alzheimer's disease and apathy-like model mice. Thus, NYT may affect the activities of neurons in the VTA, SNpc and NAc. However, little is known about the underlying mechanisms of NYT. Here, we investigated the effects of NYT on the electrophysiological properties of dopaminergic neurons in the VTA and SNpc, as well as on those of medium spiny neurons (MSNs) in the NAc (core and shell subregions), by applying the patch-clamp technique in the brain slices. NYT reduced the resting membrane potential of VTA and SNpc dopaminergic neurons. In contrast, NYT increased the firing frequency of NAc MSNs accompanied by shortened first spike latency and interspike interval. Furthermore, NYT attenuated the inward rectification and sustained outward currents. In conclusion, NYT may directly influence the excitability of dopaminergic neurons in the VTA and SNpc, as well as MSNs in the NAc (core and shell). NYT may modulate dopamine signals in appetite and motivational behaviors.


Assuntos
Neurônios Dopaminérgicos , Área Tegmentar Ventral , Animais , Medicamentos de Ervas Chinesas , Humanos , Camundongos , Núcleo Accumbens/fisiologia , Parte Compacta da Substância Negra
5.
Neurol Int ; 14(2): 471-487, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35736620

RESUMO

Oligodendrocytes (oligodendroglial cells) are glial cells that wrap neuronal axons with their differentiated plasma membranes called myelin membranes. In the pathogenesis of inflammatory cytokine-related oligodendroglial cell and myelin diseases such as multiple sclerosis (MS), typical inflammatory cytokines tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) are thought to contribute to the degeneration and/or progression of the degeneration of oligodendroglial cells and, in turn, the degeneration of naked neuronal cells in the central nervous system (CNS) tissues. Despite the known involvement of these inflammatory cytokines in disease progression, it has remained unclear whether and how TNFα or IL-6 affects the oligodendroglial cells themselves or indirectly. Here we show that TNFα or IL-6 directly inhibits morphological differentiation in FBD-102b cells, which are differentiation models of oligodendroglial cells. Their phenotype changes were supported by the decreased expression levels of oligodendroglial cell differentiation and myelin marker proteins. In addition, TNFα or IL-6 decreased phosphorylation levels of Akt kinase, whose upregulation has been associated with promoting oligodendroglial cell differentiation. Hesperetin, a flavonoid mainly contained in citrus fruit, is known to have neuroprotective effects. Hesperetin might also be able to resolve pre-illness conditions, including the irregulated secretion of cytokines, through diet. Notably, the addition of hesperetin into cells recovered TNFα- or IL-6-induced inhibition of differentiation, as supported by increased levels of marker protein expression and phosphorylation of Akt kinase. These results suggest that TNFα or IL-6 itself contributes to the inhibitory effects on the morphological differentiation of oligodendroglial cells, possibly providing information not only on their underlying pathological effects but also on flavonoids with potential therapeutic effects at the molecular and cellular levels.

6.
Noncoding RNA ; 8(3)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35736639

RESUMO

Angiotensin-converting enzyme 2 (ACE2) plays a role in catalyzing angiotensin II conversion to angiotensin (1-7), which often counteracts the renin-angiotensin system. ACE2 is expressed not only in the cells of peripheral tissues such as the heart and kidney, but also in those of the central nervous system (CNS). Additionally, ACE2 acts as the receptor required for the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), whose binding leads to endocytotic recycling and possible degradation of the ACE2 proteins themselves. One of the target cells for SARS-CoV-2 in the CNS is oligodendrocytes (oligodendroglial cells), which wrap neuronal axons with their differentiated plasma membranes called myelin membranes. Here, for the first time, we describe the role of ACE2 in FBD-102b cells, which are used as the differentiation models of oligodendroglial cells. Unexpectedly, RNA knockdown of ACE2 with CasRx-mediated gRNA or the cognate siRNA promoted oligodendroglial cell morphological differentiation with increased expression or phosphorylation levels of differentiation and/or myelin marker proteins, suggesting the negative role of ACE2 in morphological differentiation. Notably, ACE2's intracellular region preferentially interacted with the active GTP-bound form of Ras. Thus, knockdown of ACE2 relatively increased GTP-bound Ras in an affinity-precipitation assay. Indeed, inhibition of Ras resulted in decreasing both morphological differentiation and expression or phosphorylation levels of marker proteins, confirming the positive role of Ras in differentiation. These results indicate the role of ACE2 itself as a negative regulator of oligodendroglial cell morphological differentiation, newly adding ACE2 to the list of regulators of oligodendroglial morphogenesis as well as of Ras-binding proteins. These findings might help us to understand why SARS-CoV-2 causes pathological effects in the CNS.

7.
Data Brief ; 42: 108197, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35515992

RESUMO

We performed RNA-seq analyses of mRNA isolated from five organs, liver, bone, heart, kidney and blood at the pre-symptomatic state of klotho mice with/without administration of a Japanese traditional herbal medicine, juzentaihoto (JTT). Data of differentially expressed genes (DEG) with/without JTT was included. Intron retention (IR) is an important regulatory mechanism that affects gene expression and protein functions. We collected data in which retained-introns were accumulated in a particular set of genes of these organs, and showed that among these retained introns in the liver and bone a subset was recovered to the normal state by the medicine. All of the data present changes of molecular events on the levels of metabolites, proteins and gene expressions observed at the pre- symptomatic state of aging in klotho mice with/without JTT. The research article related to this Data in Brief is published in GENE entitled as "Intron retention as a new pre-symptomatic marker of aging and its recovery to the normal state by a traditional Japanese herbal medicine".

8.
Gene ; 830: 146496, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35504437

RESUMO

Intron retention (IR) is a regulatory mechanism that can retard protein production by acting at the level of mRNA processing. We recently demonstrated that IR occurs at the pre-symptomatic state during the aging process of a mouse model of aging, providing a promising biomarker for that state, and can be restored to the normal state by juzentaihoto (JTT), a Japanese herbal medicine (Kampo) (Okada et al. 2021). Here we characterized the genes that accumulate retained introns, examined the biological significance of increased IR in these genes for the host, and determined whether drugs other than JTT can have this effect. By analyzing RNA-sequencing data generated from the hippocampus of the 19-week-old SAMP8 mouse, a model for studying age-related depression and Alzheimer's disease, we showed that genes with increased IR are generally involved in multiple metabolic pathways and have pivotal roles in sensing homeostasis. We thus propose that IR is a stress response and works to fine-tune the expression of many downstream target genes, leading to lower levels of their translation under stress conditions. Interestingly, Kampo medicines, as well as other organic compounds, restored splicing of a specific set of retained introns in these sensor genes in accordance with the physiological recovery conditions of the host, which corresponds with the recovery of transcripts represented by differentially expressed genes. Thus, analysis of IR genes may have broad applicability in evaluating the pre-symptomatic state based on the extent of IR of selective sensor genes, opening a promising early diagnosis of any diseases and a strategy for evaluating efficacies of several drugs based on the extent of IR restoration of these sensor genes.


Assuntos
Doença de Alzheimer , Plantas Medicinais , Doença de Alzheimer/genética , Animais , Íntrons/genética , Japão , Camundongos , Plantas Medicinais/genética , Splicing de RNA , Análise de Sequência de RNA
9.
Biosci Biotechnol Biochem ; 86(7): 895-901, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35396846

RESUMO

As both physiological and psychological factors influence age-associated declines in older people, the development of drug therapy with multifaceted effects is required. To investigate the utility of ninjin'yoeito (NYT) against geriatric syndromes, we evaluated the effects of NYT on age-related declines in old C57BL/6 mice (88-week-old) as a preclinical model of frailty progression. Here, we showed that NYT reversed the decline of rectal temperature in old mice and also improved forelimb grip strength compared with that in the old control group without affecting skeletal muscle loss. Moreover, NYT significantly increased the duration of grooming after a sucrose solution was sprayed, which reflected self-care motivation. Finally, we revealed the antioxidant effects of NYT using a cell-free assay. These results suggest that NYT can improve both physiological and psychological declines associated with aging, and the mechanism may include antioxidant effects. NYT may have potential utility for maintaining the health of older people.


Assuntos
Medicamentos de Ervas Chinesas , Autocuidado , Idoso , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Temperatura Corporal , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Japão , Camundongos , Camundongos Endogâmicos C57BL , Motivação , Músculos
10.
Neurol Int ; 14(1): 212-244, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35225888

RESUMO

POLR3B and POLR3A are the major subunits of RNA polymerase III, which synthesizes non-coding RNAs such as tRNAs and rRNAs. Nucleotide mutations of the RNA polymerase 3 subunit b (polr3b) gene are responsible for hypomyelinating leukodystrophy 8 (HLD8), which is an autosomal recessive oligodendroglial cell disease. Despite the important association between POLR3B mutation and HLD8, it remains unclear how mutated POLR3B proteins cause oligodendroglial cell abnormalities. Herein, we show that a severe HLD8-associated nonsense mutation (Arg550-to-Ter (R550X)) primarily localizes POLR3B proteins as protein aggregates into lysosomes in the FBD-102b cell line as an oligodendroglial precursor cell model. Conversely, wild type POLR3B proteins were not localized in lysosomes. Additionally, the expression of proteins with the R550X mutation in cells decreased lysosome-related signaling through the mechanistic target of rapamycin (mTOR). Cells harboring the mutant constructs did not exhibit oligodendroglial cell differentiated phenotypes, which have widespread membranes that extend from their cell body. However, cells harboring the wild type constructs exhibited differentiated phenotypes. Ibuprofen, which is a non-steroidal anti-inflammatory drug (NSAID), improved the defects in their differentiation phenotypes and signaling through mTOR. These results indicate that the HLD8-associated POLR3B proteins with the R550X mutation are localized in lysosomes, decrease mTOR signaling, and inhibit oligodendroglial cell morphological differentiation, and ibuprofen improves these cellular pathological effects. These findings may reveal some of the molecular and cellular pathological mechanisms underlying HLD8 and their amelioration.

11.
Sci Signal ; 15(718): eabi5276, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35077201

RESUMO

Mature myelin sheaths insulate axons to increase nerve conduction velocity and protect nerve fibers from stress and physical injury. In the peripheral nervous system, the myelin sheath is produced by Schwann cells. The guanine-nucleotide exchange factor cytohesin-2 activates the protein Arf6 to promote Schwann cell myelination. Here, we investigated the regulation of cytohesin-2 and found that the phosphorylation status of Tyr381 in cytohesin-2 is central to Schwann cell myelination. Knockin mice with a nonphosphorylatable Y381F mutation in cytohesin-2 exhibited reduced myelin thickness and decreased Arf6 activity in sciatic nerve tissue. In HEK293T cells, cytohesin-2 was dephosphorylated at Tyr381 by the protein tyrosine phosphatase PTP4A1, whereas phosphorylation at this site was maintained by interaction with the adaptor protein SH2B1. Schwann cell-specific knockdown of PTP4A1 in mice increased cytohesin-2 phosphorylation and myelin thickness. Conversely, Schwann cell-specific loss of SH2B1 resulted in reduced myelin thickness and decreased cytohesin-2 phosphorylation. Thus, a signaling unit centered on cytohesin-2-with SH2B1 as a positive regulator and PTP4A1 as a negative regulator-controls Schwann cell myelination in the peripheral nervous system.


Assuntos
Bainha de Mielina , Células de Schwann , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Axônios/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Ativadoras de GTPase , Células HEK293 , Humanos , Proteínas Imediatamente Precoces , Proteínas de Membrana/metabolismo , Camundongos , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Fosforilação , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Células de Schwann/metabolismo
12.
Neurochem Res ; 47(9): 2617-2631, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34523057

RESUMO

Hypomyelinating leukodystrophy 17 is an autosomal recessive disease affecting myelin-forming oligodendroglial cells in the central nervous system. The gene responsible for HLD17 encodes aminoacyl-tRNA synthase complex-interacting multifunctional protein 2, whose product proteins form a scaffold that supports aminoacyl-tRNA synthetases throughout the cell body. Here we show that the HLD17-associated nonsense mutation (Tyr35-to-Ter [Y35X]) of AIMP2 localizes AIMP2 proteins as aggregates into the Golgi bodies in mouse oligodendroglial FBD-102b cells. Wild type AIMP2 proteins, in contrast, are distributed throughout the cell body. Expression of the Y35X mutant proteins, but not the wild type proteins, in cells upregulates Golgi stress signaling involving caspase-2 activation. Cells expressing the wild type proteins exhibit differentiated phenotypes with web-like structures bearing many processes following the induction of differentiation, whereas cells expressing the Y35X mutant proteins fail to differentiate. Furthermore, CASP2 knockdown but not control knockdown reverses the phenotypes of cells expressing the mutant proteins. These results suggest that HLD17-associated AIMP2 mutant proteins are localized in the Golgi bodies where their proteins stimulate Golgi stress-responsive CASP2 to inhibit differentiation; this effect is ameliorated by knockdown of CASP2. These findings may reveal some of the molecular and cellular pathological mechanisms underlying HLD17 and possible approaches to ameliorating the disease's effects.


Assuntos
Aminoacil-tRNA Sintetases , Caspase 2 , Aminoacil-tRNA Sintetases/genética , Animais , Caspase 2/genética , Complexo de Golgi , Camundongos , Proteínas Mutantes , Proteínas Nucleares/genética , RNA de Transferência
13.
Biosci Biotechnol Biochem ; 85(11): 2274-2280, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34529031

RESUMO

Dementia is exacerbated by loss of appetite and amotivation, and recent studies have indicated that ninjin'yoeito improves anorexia and amotivation. Previous studies suggest that ninjin'yoeito inhibits dopamine-metabolizing enzymes and enhances dopamine signaling. However, whether ninjin'yoeito increases dopamine content in living cells remains unclear. Here, PC12 cells were used to examine whether ninjin'yoeito affects the dopamine metabolic pathway. Dopamine content significantly increased 3 h after treatment ninjin'yoeito extract. Concomitantly, the levels of 3-methoxytyramine and 3,4-dihydroxyphenylacetic acid were significantly reduced. The effects of components of ninjin'yoeito on the dopamine metabolic pathway were also assessed. Treatment with onjisaponin B, nobiletin, and schisandrin, and the ingredients of Polygalae Radix, Citri Unshiu Pericarpium, and Schisandrae Fructus increased dopamine content and decreased its metabolite content in the culture media. Our findings suggest that ninjin'yoeito improves anorexia and amotivation by inhibiting metabolic enzyme and increasing the dopamine content in cells.


Assuntos
Medicamentos de Ervas Chinesas
14.
Gene ; 794: 145752, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34082065

RESUMO

Intron retention (IR) is an important regulatory mechanism that affects gene expression and protein functions. Using klotho mice at the pre-symptomatic state, we discovered that retained-introns accumulated in several organs including the liver and that among these retained introns in the liver a subset was recovered to the normal state by a Japanese traditional herbal medicine. This is the first report of IR recovery by a medicine. IR-recovered genes fell into two categories: those involved in liver-specific metabolism and in splicing. Metabolome analysis of the liver showed that the klotho mice were under starvation stress. In addition, our differentially expressed gene analysis showed that liver metabolism was actually recovered by the herbal medicine at the transcriptional level. By analogy with the widespread accumulation of intron-retained pre-mRNAs induced by heat shock stress, we propose a model in which retained-introns in klotho mice were induced by an aging stress and in which this medicine-related IR recovery is indicative of the actual recovery of liver-specific metabolic function to the healthy state. Accumulation of retained-introns was also observed at the pre-symptomatic state of aging in wild-type mice and may be an excellent marker for this state in general.


Assuntos
Envelhecimento/genética , Perfilação da Expressão Gênica/métodos , Marcadores Genéticos/efeitos dos fármacos , Glucuronidase/genética , Fígado/química , Compostos Fitoquímicos/administração & dosagem , Envelhecimento/efeitos dos fármacos , Processamento Alternativo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Resposta ao Choque Térmico , Íntrons , Japão , Proteínas Klotho , Fígado/efeitos dos fármacos , Medicina Tradicional , Metabolômica , Camundongos , Modelos Animais , Compostos Fitoquímicos/farmacologia , Precursores de RNA/genética , Análise de Sequência de RNA
15.
Exp Cell Res ; 405(1): 112654, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34044015

RESUMO

Oligodendroglial cells (oligodendrocytes) differentiate to form the myelin that wraps neuronal axons in the central nervous system (CNS). This myelin sheath supports the propagation of saltatory conduction and protects axons from physical stresses. When oligodendrocytes do not normally differentiate to myelinate axons, their key functions as oligodendrocytes in the CNS are severely impaired. The molecular mechanics that control differentiation still remain to be clarified. Arf6 belongs to the small GTPase family and is known to be a positive regulator of oligodendrocyte differentiation. Here, we show that the phospholipase D (PLD) and phosphatidylinositol-4-phosphate 5-kinase 1 (PIP5K1) molecules, the major effectors of Arf6, are involved in the regulation of oligodendrocyte differentiation. Knockdown of PLD1 or PIP5K type 1γ (PIP5K1C) by their respective specific siRNAs in mouse oligodendroglial FBD-102b cells inhibited morphological differentiation into structures bearing myelin-like processes; this finding is consistent with the concurrent changes in expression of differentiation and myelin marker proteins. Treatment with VU0155069 or UNC3230, specific inhibitors of PLD and PIP5K1, respectively, blunted morphological differentiation and decreased expression of myelin and differentiation marker proteins. Similar results have been obtained in studies using primary oligodendrocytes. These results suggest that the major Arf6 effector molecules PLD and PIP5K1 are among the molecules involved in the regulation of morphological differentiation in oligodendrocytes prior to myelination.


Assuntos
Encéfalo/citologia , Diferenciação Celular , Neurogênese , Oligodendroglia/citologia , Fosfolipase D/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Encéfalo/metabolismo , Células Cultivadas , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Oligodendroglia/metabolismo
16.
Neuroreport ; 32(10): 869-874, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34029288

RESUMO

OBJECTIVE: Recent studies have suggested that ninjin'yoeito (NYT), a traditional Japanese Kampo medicine, improves diminished motivation in humans and animals, rendering it a novel therapeutic option for impaired motivation. To better characterize the effect of NYT on motivation, we examined its effect on motivated behaviors in mice. METHODS: Mouse models of neurodegeneration-related apathy, in which striatal dopamine receptor type 2-expressing medium spiny neurons (D2-MSNs) were progressively damaged by diphtheria toxin expression, were chosen. RESULTS: The decrease in effort-based operant responding for rewards (sucrose pellets), indicative of the mouse's motivated behavior, in the affected mice was not suppressed by chronic treatment with NYT suspended in drinking water at 1% (w/v). Mice were then subjected to a sucrose preference test, wherein they freely chose to ingest tap water and a sucrose solution without being required to exert effort. The affected mice showed a decline in preference for sucrose over tap water, relative to nonaffected controls, indicating anhedonia-like traits. In contrast to the diminished operant behavior, the anhedonic behavior in the affected mice was prevented by the NYT administration. Furthermore, NYT did not affect the size of Drd2 mRNA disappearance in the striatum of affected mice, suggesting that the NYT effect was unrelated to DTA-mediated neurodegeneration. CONCLUSION: These results demonstrate that the beneficial effect of NYT on motivation is mediated, at least in part, through the potentiation of hedonic capacity by certain neuromodulatory pathways.


Assuntos
Anedonia/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medicina Kampo/métodos , Motivação/efeitos dos fármacos , Receptores de Dopamina D2/biossíntese , Anedonia/fisiologia , Animais , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Corpo Estriado/metabolismo , Expressão Gênica , Japão , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Motivação/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptores de Dopamina D2/genética
17.
Polymers (Basel) ; 13(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805425

RESUMO

Pelizaeus-Merzbacher disease (PMD), also known as hypomyelinating leukodystrophy 1 (HLD1), is an X-linked recessive disease affecting in the central nervous system (CNS). The gene responsible for HLD1 encodes proteolipid protein 1 (plp1), which is the major myelin structural protein produced by oligodendroglial cells (oligodendrocytes). HLD15 is an autosomal recessive disease affecting the glutamyl-prolyl-aminoacyl-tRNA synthetase 1 (eprs1) gene, whose product, the EPRS1 protein, is a bifunctional aminoacyl-tRNA synthetase that is localized throughout cell bodies and that catalyzes the aminoacylation of glutamic acid and proline tRNA species. Here, we show that the HLD15-associated nonsense mutation of Arg339-to-Ter (R339X) localizes EPRS1 proteins as polymeric aggregates into Rab7-positive vesicle structures in mouse oligodendroglial FBD-102b cells. Wild-type proteins, in contrast, are distributed throughout the cell bodies. Expression of the R339X mutant proteins, but not the wild-type proteins, in cells induces strong signals regulating Rab7. Whereas cells expressing the wild-type proteins exhibited phenotypes with myelin web-like structures bearing processes following the induction of differentiation, cells expressing the R339X mutant proteins did not. These results indicate that HLD15-associated EPRS1 mutant proteins are localized in Rab7-positive vesicle structures where they modulate Rab7 regulatory signaling, inhibiting cell morphological differentiation. These findings may reveal some of the molecular and cellular pathological mechanisms underlying HLD15.

18.
Medicines (Basel) ; 8(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535532

RESUMO

Genetic hypomyelinating diseases are a heterogeneous group of disorders involving the white matter. One infantile hypomyelinating leukoencephalopathy is associated with the homozygous variant (Cys4-to-Ser (C4S)) of the c11orf73 gene. Methods: We observed that in mouse oligodendroglial FBD-102b cells, the C4S mutant proteins but not the wild type ones of C11orf73 are microscopically localized in the lysosome. And, they downregulate lysosome-related signaling in an immunoblotting technique. Results: The C4S mutant proteins specifically interact with Filamin A, which is known to anchor transmembrane proteins to the actin cytoskeleton; the C4S mutant proteins and Filamin A are also observed in the lysosome fraction. While parental FBD-102b cells and cells harboring the wild type constructs exhibit morphological differentiation, cells harboring C4S mutant constructs do not. It may be that morphological differentiation is inhibited because expression of these C4S mutant proteins leads to defects in the actin cytoskeletal network involving Filamin A. Conclusions: The findings that leukoencephalopathy-associated C11ORF73 mutant proteins specifically interact with Filamin A, are localized in the lysosome, and inhibit morphological differentiation shed light on the molecular and cellular pathological mechanisms that underlie infantile hypomyelinating leukoencephalopathy.

19.
Neurol Int ; 14(1): 11-33, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35076634

RESUMO

Hypomyelinating leukodystrophy 7 (HLD7) is an autosomal recessive oligodendroglial cell-related myelin disease, which is associated with some nucleotide mutations of the RNA polymerase 3 subunit a (polr3a) gene. POLR3A is composed of the catalytic core of RNA polymerase III synthesizing non-coding RNAs, such as rRNA and tRNA. Here, we show that an HLD7-associated nonsense mutation of Arg140-to-Ter (R140X) primarily localizes POLR3A proteins as protein aggregates into lysosomes in mouse oligodendroglial FBD-102b cells, whereas the wild type proteins are not localized in lysosomes. Expression of the R140X mutant proteins, but not the wild type proteins, in cells decreased signaling through the mechanistic target of rapamycin (mTOR), controlling signal transduction around lysosomes. While cells harboring the wild type constructs exhibited phenotypes with widespread membranes with myelin marker protein expression following the induction of differentiation, cells harboring the R140X mutant constructs did not exhibit them. Ibuprofen, a non-steroidal anti-inflammatory drug (NSAID), which is also known as an mTOR signaling activator, ameliorated defects in differentiation with myelin marker protein expression and the related signaling in cells harboring the R140X mutant constructs. Collectively, HLD7-associated POLR3A mutant proteins are localized in lysosomes where they decrease mTOR signaling, inhibiting cell morphological differentiation. Importantly, ibuprofen reverses undifferentiated phenotypes. These findings may reveal some of the pathological mechanisms underlying HLD7 and their amelioration at the molecular and cellular levels.

20.
J Pharmacol Sci ; 144(3): 129-138, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32921394

RESUMO

The traditional Japanese (Kampo) medicines yokukansan (YKS) and yokukansankachimpihange (YKSCH) have similar formulas and the same indications. In animals or cultured cells, the neuropharmacological actions of YKS are sometimes more beneficial than those of YKSCH. Since both drugs are used to treat sleep disorders in Japan, we examined the ameliorative effects of YKS and YKSCH on circadian rhythm disturbance and compared their efficacy using a mouse model of circadian rhythm disruption. Ramelteon was used as the positive control. Ramelteon treatment significantly reversed decreased running wheel activity during the advanced dark phase, indicating facilitation of circadian adaptation. YKS treatment also reversed the activity in the early period of drug treatment; however, it was not statistically significant. YKSCH treatment significantly reversed the decreased activity during the advanced dark phase. Plasma melatonin (MT) levels were significantly increased in the YKSCH but not in the YKS group. The ameliorative effect of YKSCH on rhythm disruption was significantly inhibited by coadministration of the MT2 receptor antagonist. Therefore, the therapeutic effect of YKSCH on circadian rhythm disruption would be attributable, to elevated endogenous MT levels. Taken together, YKS and YKSCH have different pharmacological properties and may be more precisely prescribed depending on patients' psychological symptoms.


Assuntos
Adaptação Biológica/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Kampo , Melatonina/metabolismo , Fitoterapia , Transtornos do Sono-Vigília/tratamento farmacológico , Animais , Masculino , Melatonina/sangue , Camundongos Endogâmicos C3H , Transtornos do Sono-Vigília/etiologia , Transtornos do Sono-Vigília/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA