Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Chem Biol ; 19(4): 992-998, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38562012

RESUMO

Glycosyltransferases play a fundamental role in the biosynthesis of glycoproteins and glycotherapeutics. In this study, we investigated protein glycosyltransferase FlgGT1, belonging to the GT2 family. The GT2 family includes cysteine S-glycosyltransferases involved in antimicrobial peptide biosyntheses, sharing conserved catalytic domains while exhibiting diverse C-terminal domains. Our in vitro studies revealed that FlgGT1 recognizes structural motifs rather than specific amino acid sequences when glycosylating the flagellin protein Hag. Notably, FlgGT1 is selective for serine or threonine O-glycosylation over cysteine S-glycosylation. Molecular dynamics simulations provided insights into the structural basis of FlgGT1's ability to accommodate various sugar nucleotides as donor substrates. Mutagenesis experiments on FlgGT1 demonstrated that truncating the relatively large C-terminal domain resulted in a loss of flagellin glycosylation activity. Our classification based on sequence similarity network analysis and AlphaFold2 structural predictions suggests that the acquisition of the C-terminal domain is a key evolutionary adaptation conferring distinct substrate specificities on glycosyltransferases within the GT2 family.


Assuntos
Flagelina , Glicosiltransferases , Paenibacillus , Sequência de Aminoácidos , Cisteína/metabolismo , Flagelina/metabolismo , Glicosilação , Glicosiltransferases/metabolismo , Paenibacillus/enzimologia , Paenibacillus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA