Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
J Hum Genet ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565611

RESUMO

Spondylocostal dysostosis (SCDO) encompasses a group of skeletal disorders characterized by multiple segmentation defects in the vertebrae and ribs. SCDO has a complex genetic etiology. This study aimed to analyze and identify pathogenic variants in a fetus with SCDO. Copy number variant sequencing and whole exome sequencing were performed on a Chinese fetus with SCDO, followed by bioinformatics analyses, in vitro functional assays and a systematic review on the reported SCDO cases with LFNG pathogenic variants. Ultrasound examinations in utero exhibited that the fetus had vertebral malformation, scoliosis and tethered cord, but rib malformation was not evident. We found a novel homozygous variant (c.1078 C > T, p.R360C) within the last exon of LFNG. The variant was predicted to cause loss of function of LFNG by in silico prediction tools, which was confirmed by an in vitro assay of LFNG enzyme activity. The systematic review listed a total of 20 variants of LFNG in SCDO. The mutational spectrum spans across all exons of LFNG except the last one. This study reported the first Chinese case of LFNG-related SCDO, revealing the prenatal phenotypes and expanding the mutational spectrum of the disorder.

2.
Sci Rep ; 13(1): 11618, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463954

RESUMO

Androgen deprivation therapy is given to suppress prostate cancer growth; however, some cells continue to grow hormone-independently as castration-resistant prostate cancer (CRPC). Sulfated glycosaminoglycans promote ligand binding to receptors as co-receptors, but their role in CRPC remains unknown. Using the human prostate cancer cell line C4-2, which can proliferate in hormone-dependent and hormone-independent conditions, we found that epidermal growth factor (EGF)-activated EGFR-ERK1/2 signaling via 3-O-sulfated heparan sulfate (HS) produced by HS 3-O-sulfotransferase 1 (HS3ST1) is activated in C4-2 cells under hormone depletion. Knockdown of HS3ST1 in C4-2 cells suppressed hormone-independent growth, and inhibited both EGF binding to the cell surface and activation of EGFR-ERK1/2 signaling. Gefitinib, an EGFR inhibitor, significantly suppressed C4-2 cell proliferation and growth of a xenografted C4-2 tumor in castrated mouse. Collectively, our study has revealed a mechanism by which cancer cells switch to hormone-independent growth and identified the key regulator as 3-O-sulfated HS.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Animais , Camundongos , Neoplasias de Próstata Resistentes à Castração/patologia , Fator de Crescimento Epidérmico , Antagonistas de Androgênios/farmacologia , Receptores Androgênicos/metabolismo , Sulfatos , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Heparitina Sulfato
3.
PLoS One ; 18(4): e0284292, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37053259

RESUMO

SLC35A3 is considered an uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) transporter in mammals and regulates the branching of N-glycans. A missense mutation in SLC35A3 causes complex vertebral malformation (CVM) in cattle. However, the biological functions of SLC35A3 have not been fully clarified. To address these issues, we have established Slc35a3-/-mice using CRISPR/Cas9 genome editing system. The generated mutant mice were perinatal lethal and exhibited chondrodysplasia recapitulating CVM-like vertebral anomalies. During embryogenesis, Slc35a3 mRNA was expressed in the presomitic mesoderm of wild-type mice, suggesting that SLC35A3 transports UDP-GlcNAc used for the sugar modification that is essential for somite formation. In the growth plate cartilage of Slc35a3-/-embryos, extracellular space was drastically reduced, and many flat proliferative chondrocytes were reshaped. Proliferation, apoptosis and differentiation were not affected in the chondrocytes of Slc35a3-/-mice, suggesting that the chondrodysplasia phenotypes were mainly caused by the abnormal extracellular matrix quality. Because these histological abnormalities were similar to those observed in several mutant mice accompanying the impaired glycosaminoglycan (GAG) biosynthesis, GAG levels were measured in the spine and limbs of Slc35a3-/-mice using disaccharide composition analysis. Compared with control mice, the amounts of heparan sulfate, keratan sulfate, and chondroitin sulfate/dermatan sulfate, were significantly decreased in Slc35a3-/-mice. These findings suggest that SLC35A3 regulates GAG biosynthesis and the chondrodysplasia phenotypes were partially caused by the decreased GAG synthesis. Hence, Slc35a3-/- mice would be a useful model for investigating the in vivo roles of SLC35A3 and the pathological mechanisms of SLC35A3-associated diseases.


Assuntos
Anormalidades Musculoesqueléticas , Osteocondrodisplasias , Animais , Bovinos , Camundongos , Transporte Biológico , Sulfato de Queratano , Mamíferos , Nucleotídeos , Osteocondrodisplasias/genética , Difosfato de Uridina
4.
Genes (Basel) ; 14(2)2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36833235

RESUMO

Loss-of-function mutations in carbohydrate sulfotransferase 14 (CHST14) cause musculocontractural Ehlers-Danlos syndrome-CHST14 (mcEDS-CHST14), characterized by multiple congenital malformations and progressive connective tissue fragility-related manifestations in the cutaneous, skeletal, cardiovascular, visceral and ocular system. The replacement of dermatan sulfate chains on decorin proteoglycan with chondroitin sulfate chains is proposed to lead to the disorganization of collagen networks in the skin. However, the pathogenic mechanisms of mcEDS-CHST14 are not fully understood, partly due to the lack of in vitro models of this disease. In the present study, we established in vitro models of fibroblast-mediated collagen network formation that recapacitate mcEDS-CHST14 pathology. Electron microscopy analysis of mcEDS-CHST14-mimicking collagen gels revealed an impaired fibrillar organization that resulted in weaker mechanical strength of the gels. The addition of decorin isolated from patients with mcEDS-CHST14 and Chst14-/- mice disturbed the assembly of collagen fibrils in vitro compared to control decorin. Our study may provide useful in vitro models of mcEDS-CHST14 to elucidate the pathomechanism of this disease.


Assuntos
Síndrome de Ehlers-Danlos , Sulfotransferases , Animais , Camundongos , Decorina , Sulfotransferases/genética , Síndrome de Ehlers-Danlos/genética , Matriz Extracelular/patologia , Colágeno
5.
Genes (Basel) ; 14(2)2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36833436

RESUMO

Dermatan sulfate (DS) and its proteoglycans are essential for the assembly of the extracellular matrix and cell signaling. Various transporters and biosynthetic enzymes for nucleotide sugars, glycosyltransferases, epimerase, and sulfotransferases, are involved in the biosynthesis of DS. Among these enzymes, dermatan sulfate epimerase (DSE) and dermatan 4-O-sulfotranserase (D4ST) are rate-limiting factors of DS biosynthesis. Pathogenic variants in human genes encoding DSE and D4ST cause the musculocontractural type of Ehlers-Danlos syndrome, characterized by tissue fragility, joint hypermobility, and skin hyperextensibility. DS-deficient mice exhibit perinatal lethality, myopathy-related phenotypes, thoracic kyphosis, vascular abnormalities, and skin fragility. These findings indicate that DS is essential for tissue development as well as homeostasis. This review focuses on the histories of DSE as well as D4ST, and their knockout mice as well as human congenital disorders.


Assuntos
Dermatan Sulfato , Síndrome de Ehlers-Danlos , Gravidez , Feminino , Humanos , Animais , Camundongos , Dermatan Sulfato/metabolismo , Síndrome de Ehlers-Danlos/genética , Fenótipo , Sulfotransferases/genética , Racemases e Epimerases/genética
6.
Molecules ; 27(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36144836

RESUMO

Hyaluronidases (HYALs) are endo-beta-N-acetylhexosaminidases that depolymerize not only hyaluronan but also chondroitin sulfate (CS) at the initial step of their catabolism. Although HYAL1 hydrolyzes both CS and HA, HYAL4 is a CS-specific endoglycosidase. The substrate specificity of HYAL4 and identification of amino acid residues required for its enzymatic activity have been reported. In this study, we characterized the properties of HYAL4 including the expression levels in various tissues, cellular localization, and effects of its overexpression on intracellular CS catabolism, using cultured cells as well as mouse tissues. Hyal4 mRNA and HYAL4 protein were demonstrated to be ubiquitously expressed in various organs in the mouse. HYAL4 protein was shown to be present both on cell surfaces as well as in lysosomes of rat skeletal muscle myoblasts, L6 cells. Overexpression of HYAL4 in Chinese hamster ovary cells decreased in the total amount of CS, suggesting its involvement in the cellular catabolism of CS. In conclusion, HYAL4 may be widely distributed and play various biological roles, including the intracellular depolymerization of CS.


Assuntos
Sulfatos de Condroitina , Hialuronoglucosaminidase , Aminoácidos , Animais , Células CHO , Sulfatos de Condroitina/química , Cricetinae , Cricetulus , Glicosídeo Hidrolases , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/metabolismo , Camundongos , RNA Mensageiro , Ratos , beta-N-Acetil-Hexosaminidases
7.
Am J Physiol Cell Physiol ; 323(6): C1843-C1859, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35993517

RESUMO

Proteoglycans consist of a core protein substituted with one or more glycosaminoglycan (GAG) chains and execute versatile functions during many physiological and pathological processes. The biosynthesis of GAG chains is a complex process that depends on the concerted action of a variety of enzymes. Central to the biosynthesis of heparan sulfate (HS) and chondroitin sulfate/dermatan sulfate (CS/DS) GAG chains is the formation of a tetrasaccharide linker region followed by biosynthesis of HS or CS/DS-specific repeating disaccharide units, which then undergo modifications and epimerization. The importance of these biosynthetic enzymes is illustrated by several severe pleiotropic disorders that arise upon their deficiency. The Ehlers-Danlos syndromes (EDS) constitute a special group among these disorders. Although most EDS types are caused by defects in fibrillar types I, III, or V collagen, or their modifying enzymes, a few rare EDS types have recently been linked to defects in GAG biosynthesis. Spondylodysplastic EDS (spEDS) is caused by defective formation of the tetrasaccharide linker region, either due to ß4GalT7 or ß3GalT6 deficiency, whereas musculocontractural EDS (mcEDS) results from deficiency of D4ST1 or DS-epi1, impairing DS formation. This narrative review highlights the consequences of GAG deficiency in these specific EDS types, summarizes the associated phenotypic features and the molecular spectrum of reported pathogenic variants, and defines the current knowledge on the underlying pathophysiological mechanisms based on studies in patient-derived material, in vitro analyses, and animal models.


Assuntos
Dermatan Sulfato , Síndrome de Ehlers-Danlos , Animais , Dermatan Sulfato/metabolismo , Sulfotransferases/metabolismo , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/metabolismo , Síndrome de Ehlers-Danlos/patologia , Colágeno/metabolismo , Proteoglicanas
8.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35806490

RESUMO

The crucial roles of dermatan sulfate (DS) have been demonstrated in tissue development of the cutis, blood vessels, and bone through construction of the extracellular matrix and cell signaling. Although DS classically exerts physiological functions via interaction with collagens, growth factors, and heparin cofactor-II, new functions have been revealed through analyses of human genetic disorders as well as of knockout mice with loss of DS-synthesizing enzymes. Mutations in human genes encoding the epimerase and sulfotransferase responsible for the biosynthesis of DS chains cause connective tissue disorders including spondylodysplastic type Ehlers-Danlos syndrome, characterized by skin hyperextensibility, joint hypermobility, and tissue fragility. DS-deficient mice show perinatal lethality, skin fragility, vascular abnormalities, thoracic kyphosis, myopathy-related phenotypes, acceleration of nerve regeneration, and impairments in self-renewal and proliferation of neural stem cells. These findings suggest that DS is essential for tissue development in addition to the assembly of collagen fibrils in the skin, and that DS-deficient knockout mice can be utilized as models of human genetic disorders that involve impairment of DS biosynthesis. This review highlights a novel role of DS in tissue development studies from the past decade.


Assuntos
Dermatan Sulfato , Síndrome de Ehlers-Danlos , Animais , Colágeno/metabolismo , Dermatan Sulfato/metabolismo , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/metabolismo , Feminino , Glicosaminoglicanos/metabolismo , Camundongos , Camundongos Knockout , Gravidez , Sulfotransferases/metabolismo
9.
Hum Mutat ; 43(12): 1829-1836, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35842784

RESUMO

Musculocontractural Ehlers-Danlos syndrome caused by dermatan sulfate epimerase deficiency (mcEDS-DSE) is a rare connective tissue disorder. This is the first report describing the detailed and comprehensive clinical and pathophysiological features of mcEDS-DSE. The patient, with a novel homozygous nonsense variant (NM_013352.4:c.2601C>A:p.(Tyr867*)), exhibited mild skin hyperextensibility without fragility and small joint hypermobility, but developed recurrent large subcutaneous hematomas. Dermatan sulfate (DS) moieties on chondroitin sulfate/DS proteoglycans were significantly decreased, but remained present, in skin fibroblasts. Electron microscopy examination of skin specimens, including cupromeronic blue-staining to visualize glycosaminoglycan (GAG) chains, revealed coexistence of normally assembled collagen fibrils with attached curved GAG chains and dispersed collagen fibrils with linear GAG chains from attached collagen fibrils across interfibrillar spaces to adjacent fibrils. Residual activity of DS-epi1, encoded by DSE, and/or compensation by DS-epi2, a minor homolog of DS-epi1, may contribute to the mild skin involvement through this "mosaic" pattern of collagen fibril assembly.


Assuntos
Dermatan Sulfato , Síndrome de Ehlers-Danlos , Humanos , Colágeno/genética , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética , Racemases e Epimerases , Sulfotransferases
11.
Front Cell Dev Biol ; 9: 764781, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901009

RESUMO

Chondroitin sulfate (CS), dermatan sulfate (DS) and heparan sulfate (HS) are covalently attached to specific core proteins to form proteoglycans in their biosynthetic pathways. They are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases as well as sulfotransferases. Structural diversities of CS/DS and HS are essential for their various biological activities including cell signaling, cell proliferation, tissue morphogenesis, and interactions with a variety of growth factors as well as cytokines. Studies using mice deficient in enzymes responsible for the biosynthesis of the CS/DS and HS chains of proteoglycans have demonstrated their essential functions. Chondroitin synthase 1-deficient mice are viable, but exhibit chondrodysplasia, progression of the bifurcation of digits, delayed endochondral ossification, and reduced bone density. DS-epimerase 1-deficient mice show thicker collagen fibrils in the dermis and hypodermis, and spina bifida. These observations suggest that CS/DS are essential for skeletal development as well as the assembly of collagen fibrils in the skin, and that their respective knockout mice can be utilized as models for human genetic disorders with mutations in chondroitin synthase 1 and DS-epimerase 1. This review provides a comprehensive overview of mice deficient in CS/DS biosyntheses.

12.
Dis Model Mech ; 14(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34850861

RESUMO

Musculocontractural Ehlers-Danlos syndrome (mcEDS) is caused by generalized depletion of dermatan sulfate (DS) due to biallelic pathogenic variants in CHST14 encoding dermatan 4-O-sulfotransferase 1 (D4ST1) (mcEDS-CHST14). Here, we generated mouse models for mcEDS-CHST14 carrying homozygous mutations (1 bp deletion or 6 bp insertion/10 bp deletion) in Chst14 through CRISPR/Cas9 genome engineering to overcome perinatal lethality in conventional Chst14-deleted knockout mice. DS depletion was detected in the skeletal muscle of these genome-edited mutant mice, consistent with loss of D4ST1 activity. The mutant mice showed common pathophysiological features, regardless of the variant, including growth impairment and skin fragility. Notably, we identified myopathy-related phenotypes. Muscle histopathology showed variation in fiber size and spread of the muscle interstitium. Decorin localized diffusely in the spread endomysium and perimysium of skeletal muscle, unlike in wild-type mice. The mutant mice showed lower grip strength and decreased exercise capacity compared to wild type, and morphometric evaluation demonstrated thoracic kyphosis in mutant mice. The established CRISPR/Cas9-engineered Chst14 mutant mice could be a useful model to further our understanding of mcEDS pathophysiology and aid in the development of novel treatment strategies.


Assuntos
Síndrome de Ehlers-Danlos , Animais , Sistemas CRISPR-Cas/genética , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/patologia , Feminino , Genômica , Camundongos , Camundongos Knockout , Gravidez , Sulfotransferases/genética , Sulfotransferases/metabolismo
13.
Front Cell Dev Biol ; 9: 695021, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34708033

RESUMO

Carbohydrate sulfotransferase 14 (CHST14) encodes dermatan 4-O-sulfotransferase 1, a critical enzyme for dermatan sulfate (DS) biosynthesis. Musculocontractural Ehlers-Danlos syndrome (mcEDS) is associated with biallelic pathogenic variants of CHST14 and is characterized by malformations and manifestations related to progressive connective tissue fragility. We identified myopathy phenotypes in Chst14-deficient mice using an mcEDS model. Decorin is a proteoglycan harboring a single glycosaminoglycan chain containing mainly DS, which are replaced with chondroitin sulfate (CS) in mcEDS patients with CHST14 deficiency. We studied the function of decorin in the skeletal muscle of Chst14-deficient mice because decorin is important for collagen-fibril assembly and has a myokine role in promoting muscle growth. Although decorin was present in the muscle perimysium of wild-type (Chst14+/+ ) mice, decorin was distributed in the muscle perimysium as well as in the endomysium of Chst14-/- mice. Chst14-/- mice had small muscle fibers within the spread interstitium; however, histopathological findings indicated milder myopathy in Chst14-/- mice. Myostatin, a negative regulator of protein synthesis in the muscle, was upregulated in Chst14-/- mice. In the muscle of Chst14-/- mice, decorin was downregulated compared to that in Chst14+/+ mice. Chst14-/- mice showed altered cytokine/chemokine balance and increased fibrosis, suggesting low myogenic activity in DS-deficient muscle. Therefore, DS deficiency in mcEDS causes pathological localization and functional abnormalities of decorin, which causes disturbances in skeletal muscle myogenesis.

14.
Front Genet ; 12: 717535, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539746

RESUMO

Glycosaminoglycans (GAGs) including chondroitin sulfate, dermatan sulfate, and heparan sulfate are covalently attached to specific core proteins to form proteoglycans, which are distributed at the cell surface as well as in the extracellular matrix. Proteoglycans and GAGs have been demonstrated to exhibit a variety of physiological functions such as construction of the extracellular matrix, tissue development, and cell signaling through interactions with extracellular matrix components, morphogens, cytokines, and growth factors. Not only connective tissue disorders including skeletal dysplasia, chondrodysplasia, multiple exostoses, and Ehlers-Danlos syndrome, but also heart and kidney defects, immune deficiencies, and neurological abnormalities have been shown to be caused by defects in GAGs as well as core proteins of proteoglycans. These findings indicate that GAGs and proteoglycans are essential for human development in major organs. The glycobiological aspects of congenital disorders caused by defects in GAG-biosynthetic enzymes including specific glysocyltransferases, epimerases, and sulfotransferases, in addition to core proteins of proteoglycans will be comprehensively discussed based on the literature to date.

15.
Front Cell Dev Biol ; 9: 709018, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552927

RESUMO

Glycosaminoglycans (GAGs) including chondroitin sulfate, dermatan sulfate, heparan sulfate, and keratan sulfate, except for hyaluronan that is a free polysaccharide, are covalently attached to core proteins to form proteoglycans. More than 50 gene products are involved in the biosynthesis of GAGs. We recently developed a comprehensive glycosylation mapping tool, GlycoMaple, for visualization and estimation of glycan structures based on gene expression profiles. Using this tool, the expression levels of GAG biosynthetic genes were analyzed in various human tissues as well as tumor tissues. In brain and pancreatic tumors, the pathways for biosynthesis of chondroitin and dermatan sulfate were predicted to be upregulated. In breast cancerous tissues, the pathways for biosynthesis of chondroitin and dermatan sulfate were predicted to be up- and down-regulated, respectively, which are consistent with biochemical findings published in the literature. In addition, the expression levels of the chondroitin sulfate-proteoglycan versican and the dermatan sulfate-proteoglycan decorin were up- and down-regulated, respectively. These findings may provide new insight into GAG profiles in various human diseases including cancerous tumors as well as neurodegenerative disease using GlycoMaple analysis.

16.
Dev Cell ; 56(8): 1195-1209.e7, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33730547

RESUMO

Glycans are one of the fundamental classes of macromolecules and are involved in a broad range of biological phenomena. A large variety of glycan structures can be synthesized depending on tissue or cell types and environmental changes. Here, we developed a comprehensive glycosylation mapping tool, termed GlycoMaple, to visualize and estimate glycan structures based on gene expression. We informatically selected 950 genes involved in glycosylation and its regulation. Expression profiles of these genes were mapped onto global glycan metabolic pathways to predict glycan structures, which were confirmed using glycomic analyses. Based on the predictions of N-glycan processing, we constructed 40 knockout HEK293 cell lines and analyzed the effects of gene knockout on glycan structures. Finally, the glycan structures of 64 cell lines, 37 tissues, and primary colon tumor tissues were estimated and compared using publicly available databases. Our systematic approach can accelerate glycan analyses and engineering in mammalian cells.


Assuntos
Redes e Vias Metabólicas , Linhagem Celular Tumoral , Técnicas de Inativação de Genes , Glicômica , Glicosilação , Células HEK293 , Humanos , Redes e Vias Metabólicas/genética , Polissacarídeos/química , Polissacarídeos/metabolismo , Reprodutibilidade dos Testes
17.
Glycobiology ; 31(2): 137-150, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-32601684

RESUMO

Loss-of-function variants in CHST14 cause a dermatan 4-O-sulfotransferase deficiency named musculocontractural Ehlers-Danlos syndrome-CHST14 (mcEDS-CHST14), resulting in complete depletion of the dermatan sulfate moiety of decorin glycosaminoglycan (GAG) chains, which is replaced by chondroitin sulfate. Recently, we uncovered structural alteration of GAG chains in the skin of patients with mcEDS-CHST14. Here, we conducted the first systematic investigation of Chst14 gene-deleted homozygote (Chst14-/-) mice. We used skin samples of wild-type (Chst14+/+) and Chst14-/- mice. Mechanical fragility of the skin was measured with a tensile test. Pathology was observed using light microscopy, decorin immunohistochemistry and electron microscopy (EM) including cupromeronic blue (CB) staining. Quantification of chondroitin sulfate and dermatan sulfate was performed using enzymatic digestion followed by anion-exchange HPLC. In Chst14-/- mice, skin tensile strength was significantly decreased compared with that in Chst14+/+ mice. EM showed that collagen fibrils were oriented in various directions to form disorganized collagen fibers in the reticular layer. Through EM-based CB staining, rod-shaped linear GAG chains were found to be attached at one end to collagen fibrils and protruded outside of the fibrils, in contrast to them being round and wrapping the collagen fibrils in Chst14+/+ mice. A very low level of dermatan sulfate disaccharides was detected in the skin of Chst14-/- mice by anion-exchange chromatography. Chst14-/- mice, exhibiting similar abnormalities in the GAG structure of decorin and collagen networks in the skin, could be a reasonable model for skin fragility of patients with mcEDS-CHST14, shedding light on the role of dermatan sulfate in maintaining skin strength.


Assuntos
Síndrome de Ehlers-Danlos/genética , Pele/metabolismo , Sulfotransferases/genética , Animais , Síndrome de Ehlers-Danlos/patologia , Camundongos , Camundongos Knockout , Sulfotransferases/deficiência , Sulfotransferases/metabolismo
18.
J Biochem ; 169(1): 55-64, 2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32730567

RESUMO

Dermatan sulphate (DS), a glycosaminoglycan, is present in the extracellular matrix and on the cell surface. Previously, we showed that heparan sulphate plays a key role in the maintenance of the undifferentiated state in mouse embryonic stem cells (mESCs) and in the regulation of their differentiation. Chondroitin sulphate has also been to be important for pluripotency and differentiation of mESCs. Keratan sulphate is a marker of human pluripotent stem cells. To date, however, the function of DS in mESCs has not been clarified. Dermatan 4 sulfotransferase 1, which transfers sulphate to the C-4 hydroxyl group of N-acetylgalactosamine of DS, contributes to neuronal differentiation of mouse neural progenitor cells. Therefore, we anticipated that neuronal differentiation would be induced in mESCs in culture by the addition of DS. To test this expectation, we investigated neuronal differentiation in mESCs and human neural stem cells (hNSCs) cultures containing DS. In mESCs, DS promoted neuronal differentiation by activation of extracellular signal-regulated kinase 1/2 and also accelerated neurite outgrowth. In hNSCs, DS promoted neuronal differentiation and neuronal migration, but not neurite outgrowth. Thus, DS promotes neuronal differentiation in both mouse and human stem cells, suggesting that it offers a novel method for efficiently inducing neuronal differentiation.


Assuntos
Anticoagulantes/farmacologia , Diferenciação Celular/efeitos dos fármacos , Dermatan Sulfato/farmacologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Movimento Celular/efeitos dos fármacos , Sulfatos de Condroitina/farmacologia , Células-Tronco Embrionárias/metabolismo , Heparitina Sulfato/farmacologia , Humanos , Camundongos , Células-Tronco Neurais/metabolismo , Neurogênese/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Neurônios/metabolismo
19.
Biochim Biophys Acta Gen Subj ; 1865(2): 129804, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33253804

RESUMO

BACKGROUND: Perineuronal nets (PNNs) are insoluble aggregates of extracellular matrix molecules in the brain that consist of hyaluronan (HA) and chondroitin sulfate proteoglycans (CSPGs). PNNs promote the acquisition and storage of memories by stabilizing the formation of synapses in the adult brain. Although the deterioration of PNNs has been suggested to contribute to the age-dependent decline in brain function, the molecular mechanisms underlying age-related changes in PNNs remain unclear. METHODS: The amount and solubility of PNN components were investigated by sequential extraction followed by a disaccharide analysis and immunoblotting. We examined the interaction between HA and aggrecan, a major HA-binding CSPG, by combining mass spectrometry and pull-down assays. RESULTS: The solubility and amount of HA increased in the brain with age. Among several CSPGs, the solubility of aggrecan was selectively elevated during aging. In contrast to alternations in biochemical properties, the expression of PNN components at the transcript level was not markedly changed by aging. The increased solubility of aggrecan was not due to the loss of HA-binding properties. Our results indicated that the degradation of high-molecular-mass HA induced the release of the HA-aggrecan complex from PNNs in the aged brain. CONCLUSION: The present study revealed a novel mechanism underlying the age-related deterioration of PNNs in the brain.


Assuntos
Agrecanas/metabolismo , Envelhecimento , Encéfalo/fisiologia , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Ácido Hialurônico/metabolismo , Animais , Encéfalo/citologia , Matriz Extracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Neurônios/citologia , Neurônios/metabolismo
20.
Front Cell Dev Biol ; 8: 597857, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363150

RESUMO

Proteoglycans are structurally and functionally diverse biomacromolecules found abundantly on cell membranes and in the extracellular matrix. They consist of a core protein linked to glycosaminoglycan chains via a tetrasaccharide linkage region. Here, we show that CRISPR/Cas9-mediated b3galt6 knock-out zebrafish, lacking galactosyltransferase II, which adds the third sugar in the linkage region, largely recapitulate the phenotypic abnormalities seen in human ß3GalT6-deficiency disorders. These comprise craniofacial dysmorphism, generalized skeletal dysplasia, skin involvement and indications for muscle hypotonia. In-depth TEM analysis revealed disturbed collagen fibril organization as the most consistent ultrastructural characteristic throughout different affected tissues. Strikingly, despite a strong reduction in glycosaminoglycan content, as demonstrated by anion-exchange HPLC, subsequent LC-MS/MS analysis revealed a small amount of proteoglycans containing a unique linkage region consisting of only three sugars. This implies that formation of glycosaminoglycans with an immature linkage region is possible in a pathogenic context. Our study, therefore unveils a novel rescue mechanism for proteoglycan production in the absence of galactosyltransferase II, hereby opening new avenues for therapeutic intervention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA