RESUMO
Epigenetic reprogramming resets parental epigenetic memories and differentiates primordial germ cells (PGCs) into mitotic pro-spermatogonia or oogonia. This process ensures sexually dimorphic germ cell development for totipotency1. In vitro reconstitution of epigenetic reprogramming in humans remains a fundamental challenge. Here we establish a strategy for inducing epigenetic reprogramming and differentiation of pluripotent stem-cell-derived human PGC-like cells (hPGCLCs) into mitotic pro-spermatogonia or oogonia, coupled with their extensive amplification (about >1010-fold). Bone morphogenetic protein (BMP) signalling is a key driver of these processes. BMP-driven hPGCLC differentiation involves attenuation of the MAPK (ERK) pathway and both de novo and maintenance DNA methyltransferase activities, which probably promote replication-coupled, passive DNA demethylation. hPGCLCs deficient in TET1, an active DNA demethylase abundant in human germ cells2,3, differentiate into extraembryonic cells, including amnion, with de-repression of key genes that bear bivalent promoters. These cells fail to fully activate genes vital for spermatogenesis and oogenesis, and their promoters remain methylated. Our study provides a framework for epigenetic reprogramming in humans and an important advance in human biology. Through the generation of abundant mitotic pro-spermatogonia and oogonia-like cells, our results also represent a milestone for human in vitro gametogenesis research and its potential translation into reproductive medicine.
Assuntos
Reprogramação Celular , Epigênese Genética , Células Germinativas , Técnicas In Vitro , Feminino , Humanos , Masculino , Âmnio/citologia , Proteínas Morfogenéticas Ósseas/metabolismo , Reprogramação Celular/genética , Metilação de DNA/genética , Células Germinativas/metabolismo , Células Germinativas/citologia , Sistema de Sinalização das MAP Quinases , Mitose/genética , Oxigenases de Função Mista/deficiência , Oogênese/genética , Oogônios/citologia , Oogônios/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Regiões Promotoras Genéticas/genética , Espermatogênese/genética , Espermatogônias/citologia , Espermatogônias/metabolismo , Regulação da Expressão Gênica no DesenvolvimentoRESUMO
Runt-related transcription factor (RUNX) family members play critical roles in the development of multiple organs. Mammalian RUNX family members, consisting of RUNX1, RUNX2, and RUNX3, have distinct tissue-specific expression and function. In this study, we examined the spatiotemporal expression patterns of RUNX family members in developing kidneys and analyzed the role of RUNX1 during kidney development. In the developing mouse kidney, RUNX1 protein was strongly expressed in the ureteric bud (UB) tip and weakly expressed in the distal segment of the renal vesicle (RV), comma-shaped body (CSB), and S-shaped body (SSB). In contrast, RUNX2 protein was restricted to the stroma, and RUNX3 protein was only expressed in immune cells. We also analyzed the expression of RUNX family members in the cynomolgus monkey kidney. We found that expression patterns of RUNX2 and RUNX3 were conserved between rodents and primates, whereas RUNX1 was only expressed in the UB tip, not in the RV, CSB, or SSB of cynomolgus monkeys, suggesting a species differences. We further evaluated the roles of RUNX1 using two different conditional knockout mice: Runx1f/f:HoxB7-Cre and Runx1f/f:R26-CreERT2 and found no abnormalities in the kidney. Our findings showed that RUNX1, which is mainly expressed in the UB tip, is not essential for kidney development.
Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Rim , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Rim/metabolismo , Rim/embriologia , Rim/crescimento & desenvolvimento , Camundongos , Macaca fascicularis , Regulação da Expressão Gênica no Desenvolvimento , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidades alfa de Fatores de Ligação ao Core/metabolismo , Subunidades alfa de Fatores de Ligação ao Core/genética , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
Recent regenerative studies using human pluripotent stem cells (hPSCs) have developed multiple kidney-lineage cells and organoids. However, to further form functional segments of the kidney, interactions of epithelial and interstitial cells are required. Here we describe a selective differentiation of renal interstitial progenitor-like cells (IPLCs) from human induced pluripotent stem cells (hiPSCs) by modifying our previous induction method for nephron progenitor cells (NPCs) and analyzing mouse embryonic interstitial progenitor cell (IPC) development. Our IPLCs combined with hiPSC-derived NPCs and nephric duct cells form nephrogenic niche- and mesangium-like structures in vitro. Furthermore, we successfully induce hiPSC-derived IPLCs to differentiate into mesangial and erythropoietin-producing cell lineages in vitro by screening differentiation-inducing factors and confirm that p38 MAPK, hypoxia, and VEGF signaling pathways are involved in the differentiation of mesangial-lineage cells. These findings indicate that our IPC-lineage induction method contributes to kidney regeneration and developmental research.
Assuntos
Eritropoetina , Células-Tronco Pluripotentes Induzidas , Humanos , Animais , Camundongos , Rim , Linhagem da Célula , RegeneraçãoRESUMO
During fetal oocyte development in mammals, germ cells progress through meiotic prophase I to form primordial follicles with pregranulosa cells. The primordial follicles remain dormant until oogenesis resumes during puberty. Studies in mice have elucidated mechanisms governing oogenesis, leading to the successful induction of functional oocytes from mouse pluripotent stem cells in vitro. Based on the in vivo/in vitro knowledge in mice and the histological and transcriptomic evidence for fetal oocyte development in humans and primates, human/primate oocyte-like cells corresponding to the early stage of oocytes in vivo have been successfully induced in vitro. Here, we discuss recent advances in our understanding of the mechanisms of fetal oocyte development in mammals, as well as in in vitro oogenesis.
Assuntos
Meiose , Células-Tronco Pluripotentes , Camundongos , Animais , Humanos , Oócitos , Oogênese/genética , Mamíferos/genéticaRESUMO
Human in vitro oogenesis provides a framework for clarifying the mechanism of human oogenesis. To create its benchmark, it is vital to promote in vitro oogenesis using a model physiologically close to humans. Here, we establish a foundation for in vitro oogenesis in cynomolgus (cy) monkeys (Macaca fascicularis): cy female embryonic stem cells harboring one active and one inactive X chromosome (Xa and Xi, respectively) differentiate robustly into primordial germ cell-like cells, which in xenogeneic reconstituted ovaries develop efficiently into oogonia and, remarkably, further into meiotic oocytes at the zygotene stage. This differentiation entails comprehensive epigenetic reprogramming, including Xi reprogramming, yet Xa and Xi remain epigenetically asymmetric with, as partly observed in vivo, incomplete Xi reactivation. In humans and monkeys, the Xi epigenome in pluripotent stem cells functions as an Xi-reprogramming determinant. We further show that developmental pathway over-activations with suboptimal up-regulation of relevant meiotic genes impede in vitro meiotic progression. Cy in vitro oogenesis exhibits critical homology with the human system, including with respect to bottlenecks, providing a salient model for advancing human in vitro oogenesis.
Assuntos
Oócitos , Oogênese , Animais , Feminino , Humanos , Macaca fascicularis , Oogênese/fisiologia , Ovário , Células-Tronco EmbrionáriasRESUMO
In vitro oogenesis is key to elucidating the mechanism of human female germ-cell development and its anomalies. Accordingly, pluripotent stem cells have been induced into primordial germ cell-like cells and into oogonia with epigenetic reprogramming, yet further reconstitutions remain a challenge. Here, we demonstrate ex vivo reconstitution of fetal oocyte development in both humans and cynomolgus monkeys (Macaca fascicularis). With an optimized culture of fetal ovary reaggregates over three months, human and monkey oogonia enter and complete the first meiotic prophase to differentiate into diplotene oocytes that form primordial follicles, the source for oogenesis in adults. The cytological and transcriptomic progressions of fetal oocyte development in vitro closely recapitulate those in vivo. A comparison of single-cell transcriptomes among humans, monkeys, and mice unravels primate-specific and conserved programs driving fetal oocyte development, the former including a distinct transcriptomic transformation upon oogonia-to-oocyte transition and the latter including two active X chromosomes with little X-chromosome upregulation. Our study provides a critical step forward for realizing human in vitro oogenesis and uncovers salient characteristics of fetal oocyte development in primates.
Assuntos
Meiose , Oogênese , Animais , Feminino , Humanos , Macaca fascicularis , Camundongos , Oócitos , Oogênese/fisiologia , OvárioRESUMO
Germ cells are unique in engendering totipotency, yet the mechanisms underlying this capacity remain elusive. Here, we perform comprehensive and in-depth nucleome analysis of mouse germ-cell development in vitro, encompassing pluripotent precursors, primordial germ cells (PGCs) before and after epigenetic reprogramming, and spermatogonia/spermatogonial stem cells (SSCs). Although epigenetic reprogramming, including genome-wide DNA de-methylation, creates broadly open chromatin with abundant enhancer-like signatures, the augmented chromatin insulation safeguards transcriptional fidelity. These insulatory constraints are then erased en masse for spermatogonial development. Notably, despite distinguishing epigenetic programming, including global DNA re-methylation, the PGCs-to-spermatogonia/SSCs development entails further euchromatization. This accompanies substantial erasure of lamina-associated domains, generating spermatogonia/SSCs with a minimal peripheral attachment of chromatin except for pericentromeres-an architecture conserved in primates. Accordingly, faulty nucleome maturation, including persistent insulation and improper euchromatization, leads to impaired spermatogenic potential. Given that PGCs after epigenetic reprogramming serve as oogenic progenitors as well, our findings elucidate a principle for the nucleome programming that creates gametogenic progenitors in both sexes, defining a basis for nuclear totipotency.
Assuntos
Epigênese Genética , Células Germinativas , Animais , Cromatina/genética , Cromatina/metabolismo , Metilação de DNA , Epigenômica , Feminino , Células Germinativas/metabolismo , Masculino , Mamíferos/genética , Camundongos , EspermatogôniasRESUMO
BACKGROUND: Endothelial-mesenchymal transformation (EndMT) is essential for endocardial cushion formation during cardiac morphogenesis. We recently identified Tmem100 as an endothelial gene indispensable for vascular development. In this study, we further investigated its roles for EndMT during atrioventricular canal (AVC) cushion formation. RESULTS: Tmem100 was expressed in AVC endocardial cells, and Tmem100 null embryos showed severe EndMT defect in the AVC cushions. While calcineurin-dependent suppression of vascular endothelial growth factor (VEGF) expression in the AVC myocardium is important for EndMT, significant up-regulation of Vegfa expression was observed in Tmem100 null heart. EndMT impaired in Tmem100 null AVC explants was partially but significantly restored by the expression of constitutively-active calcineurin A, suggesting dysregulation of myocardial calcineurin-VEGF signaling in Tmem100 null heart. Moreover, Tmem100 null endocardial cells in explant culture did not show EndMT in response to the treatment with myocardium-derived growth factors, transforming growth factor ß2 and bone morphogenetic protein 2, indicating involvement of an additional endocardial-specific abnormality in the mechanism of EndMT defect. The lack of NFATc1 nuclear translocation in endocardial cells of Tmem100 null embryos suggests impairment of endocardial calcium signaling. CONCLUSIONS: The Tmem100 deficiency causes EndMT defect during AVC cushion formation possibly via disturbance of multiple calcium-related signaling events.
Assuntos
Embrião de Mamíferos/metabolismo , Transição Epitelial-Mesenquimal , Regulação da Expressão Gênica no Desenvolvimento , Cardiopatias Congênitas/embriologia , Coração/embriologia , Proteínas de Membrana/deficiência , Animais , Sinalização do Cálcio/genética , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Camundongos , Camundongos Mutantes , Miocárdio/metabolismo , Miocárdio/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
The Hairy-related transcription factor family of Notch- and ALK1-downstream transcriptional repressors, called Hrt/Hey/Hesr/Chf/Herp/Gridlock, has complementary and indispensable functions for vascular development. While mouse embryos null for either Hrt1/Hey1 or Hrt2/Hey2 did not show early vascular phenotypes, Hrt1/Hey1; Hrt2/Hey2 double null mice (H1(ko) /H2(ko) ) showed embryonic lethality with severe impairment of vascular morphogenesis. It remained unclear, however, whether Hrt/Hey functions are required in endothelial cells or vascular smooth muscle cells. In this study, we demonstrate that mice with endothelial-specific deletion of Hrt2/Hey2 combined with global Hrt1/Hey1 deletion (H1(ko) /H2(eko) ) show abnormal vascular morphogenesis and embryonic lethality. Their defects were characterized by the failure of vascular network formation in the yolk sac, abnormalities of embryonic vascular structures and impaired smooth muscle cell recruitment, and were virtually identical to the H1(ko) /H2(ko) phenotypes. Among signaling molecules implicated in vascular development, Robo4 expression was significantly increased and activation of Src family kinases was suppressed in endothelial cells of H1(ko) /H2(eko) embryos. The present study indicates an important role of Hrt1/Hey1 and Hrt2/Hey2 in endothelial cells during early vascular development, and further suggests involvement of Robo4 and Src family kinases in the mechanisms of embryonic vascular defects caused by the Hrt/Hey deficiency.