Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 13(7)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35888820

RESUMO

This paper presents the use of ferroelectric behavior in scandium-aluminum nitride (ScxAl1-xN) to create dual-mode Lamb-wave resonators for the realization of intrinsically configurable radio-frequency front-end systems. An integrated array of intrinsically switchable dual-mode Lamb-wave resonators with frequencies covering the 0.45-3 GHz spectrum. The resonators are created in ferroelectric scandium-aluminum nitride (Sc0.28Al0.72N) film and rely on period poling for intrinsic configuration between Lamb modes with highly different wavelengths and frequencies. A comprehensive analytical model is presented, formulating intrinsically switchable dual-mode operation and providing closed-form derivation of electromechanical coupling (kt2) in the two resonance modes as a function of electrode dimensions and scandium content. Fabricated resonator prototypes show kt2s as high as 4.95%, when operating in the first modes over 0.45-1.6 GHz, 2.23% when operating in the second mode of operation over 0.8-3 GHz, and series quality factors (Qs) over 300-800. Benefiting from lithographical frequency tailorability and intrinsic switchability that alleviate the need for external multiplexers, and large kt2 and Q, dual-mode Sc0.28Al0.72N Lamb-wave resonators are promising candidates to realize single-chip multi-band reconfigurable spectral processors for radio-frequency front-ends of modern wireless systems.

2.
ACS Appl Mater Interfaces ; 11(41): 37626-37634, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31553159

RESUMO

Nitrogen-doped porous carbon materials show excellent water adsorption ability by forming strong hydrogen bonding between water molecules and the doped atoms. When these porous carbon materials are used to construct a water management layer (WML) of a passive direct methanol fuel cell (DMFC), high water concentration and hydraulic pressure formed inside the cathode catalyst layer would facilitate the water recovery from cathode to anode. In this paper, a highly hydrophilic nitrogen-doped carbon aerogel was synthesized by the carbonization of hydrogel precursors composed of resorcinol, formaldehyde, and graphene oxide under ammonia, and it was used for the first time to construct the WML for liquid-feed and vapor-feed passive DMFCs. The results show that the WML significantly improves the output performance of the liquid-feed DMFC by enhancing the water recovery, which is characterized and proved by the smaller cathode polarization, the slightly increased anode polarization, and a released cathode water flooding situation. A new method was also proposed to study the in situ methanol crossover of DMFCs, which confirmed that the methanol crossover during the discharge was reduced by the WML. As for the vapor-feed DMFCs, the WML reduces both the cathode and anode polarizations significantly, which increases the output performance greatly. This study opens a new window for the design and optimization of the membrane assembly electrode of DMFCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA