Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Clin Transl Med ; 14(2): e1529, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38303609

RESUMO

OBJECTIVE: Our study was to elucidate the role of RNA helicase DEAD-Box Helicase 17 (DDX17) in NAFLD and to explore its underlying mechanisms. METHODS: We created hepatocyte-specific Ddx17-deficient mice aim to investigate the impact of Ddx17 on NAFLD induced by a high-fat diet (HFD) as well as methionine and choline-deficient l-amino acid diet (MCD) in adult male mice. RNA-seq and lipidomic analyses were conducted to depict the metabolic landscape, and CUT&Tag combined with chromatin immunoprecipitation (ChIP) and luciferase reporter assays were conducted. RESULTS: In this work, we observed a notable increase in DDX17 expression in the livers of patients with NASH and in murine models of NASH induced by HFD or MCD. After introducing lentiviruses into hepatocyte L02 for DDX17 knockdown or overexpression, we found that lipid accumulation induced by palmitic acid/oleic acid (PAOA) in L02 cells was noticeably weakened by DDX17 knockdown but augmented by DDX17 overexpression. Furthermore, hepatocyte-specific DDX17 knockout significantly alleviated hepatic steatosis, inflammatory response and fibrosis in mice after the administration of MCD and HFD. Mechanistically, our analysis of RNA-seq and CUT&Tag results combined with ChIP and luciferase reporter assays indicated that DDX17 transcriptionally represses Cyp2c29 gene expression by cooperating with CCCTC binding factor (CTCF) and DEAD-Box Helicase 5 (DDX5). Using absolute quantitative lipidomics analysis, we identified a hepatocyte-specific DDX17 deficiency that decreased lipid accumulation and altered lipid composition in the livers of mice after MCD administration. Based on the RNA-seq analysis, our findings suggest that DDX17 could potentially have an impact on the modulation of lipid metabolism and the activation of M1 macrophages in murine NASH models. CONCLUSION: These results imply that DDX17 is involved in NASH development by promoting lipid accumulation in hepatocytes, inducing the activation of M1 macrophages, subsequent inflammatory responses and fibrosis through the transcriptional repression of Cyp2c29 in mice. Therefore, DDX17 holds promise as a potential drug target for the treatment of NASH.


Assuntos
Transtornos do Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Masculino , Camundongos , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fibrose , Expressão Gênica , Metabolismo dos Lipídeos/genética , Transtornos do Metabolismo dos Lipídeos/genética , Lipídeos , Luciferases/metabolismo , Macrófagos/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Progressão da Doença
2.
Cell Commun Signal ; 22(1): 71, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279122

RESUMO

Integrinß-1 (ITGB1) is a crucial member of the transmembrane glycoprotein signaling receptor family and is also central to the integrin family. It forms heterodimers with other ligands, participates in intracellular signaling and controls a variety of cellular processes, such as angiogenesis and the growth of neurons; because of its role in bidirectional signaling regulation both inside and outside the membrane, ITGB1 must interact with a multitude of substances, so a variety of interfering factors can affect ITGB1 and lead to changes in its function. Over the past 20 years, many studies have confirmed a clear causal relationship between ITGB1 dysregulation and cancer development and progression in a wide range of benign diseases and solid tumor types, which may imply that ITGB1 is a prognostic biomarker and a therapeutic target for cancer treatment that warrants further investigation. This review summarizes the biological roles of ITGB1 in benign diseases and cancers, and compiles the current status of ITGB1 function and therapy in various aspects of tumorigenesis and progression. Finally, future research directions and application prospects of ITGB1 are suggested. Video Abstract.


Assuntos
Integrina beta1 , Neoplasias , Linhagem Celular Tumoral , Integrina beta1/metabolismo , Transdução de Sinais , Proteínas de Transporte , Neoplasias/terapia
3.
Clin Transl Med ; 14(1): e1563, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38279869

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) continues to pose a significant threat to patient survival. Emerging evidence underscores the pivotal involvement of long non-coding RNAs (lncRNAs) in the cancer process. Nevertheless, our understanding of the roles and processes of lncRNAs in HCC remains limited. METHODS: The expression level of USP27X-AS1 was assessed in an HCC patient cohort through a combination of bioinformatics analysis and qRT-PCR. Subsequent biological experiments were conducted to delve into the functional aspects of USP27X-AS1. Additional molecular biology techniques, including RNA pulldown and RNA immunoprecipitation (RIP), were employed to elucidate the potential mechanisms involving USP27X-AS1 in HCC. Finally, CUT-RUN assay and other investigations were carried out to determine the factors contributing to the heightened expression of USP27X-AS1 in HCC. RESULTS: High expression of the novel oncogene USP27X-AS1 predicted poor prognosis in HCC patients. Further investigation confirmed that USP27X-AS1 promoted the proliferation and metastasis of HCC by enabling USP7 to interact with AKT, which reduced level of AKT poly-ubiquitylation and enhanced AKT protein stability, which improves protein stabilisation of AKT and promotes the progression of HCC. Moreover, we also revealed that SP1 binds to USP27X-AS1 promoter to activate its transcription. CONCLUSIONS: Novel oncogenic lncRNA USP27X-AS1 promoted HCC progression via recruiting USP7 to deubiquitinate AKT. SP1 transcriptionally activated USP27X-AS1 expression. These findings shed light on HCC and pointed to USP27X-AS1 as a potential predictive biomarker and treatment target for the malignancy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Peptidase 7 Específica de Ubiquitina/genética
4.
Int J Biol Sci ; 20(1): 113-126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164174

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a global health burden closely linked to insulin resistance, obesity, and type 2 diabetes. The complex pathophysiology of NAFLD involves multiple cellular pathways and molecular factors. Nuclear receptors (NRs) have emerged as crucial regulators of lipid metabolism and inflammation in NAFLD, offering potential therapeutic targets for NAFLD. Targeting PPARs and FXRs has shown promise in ameliorating NAFLD symptoms and halting disease progression. However, further investigation is needed to address side effects and personalize therapy approaches. This review summarizes the current understanding of the involvement of NRs in the pathogenesis of NAFLD and explores their therapeutic potential. We discuss the role of several NRs in modulating lipid homeostasis in the liver, including peroxisome proliferator-activated receptors (PPARs), liver X receptors (LXRs), farnesoid X receptors (FXRs), REV-ERB, hepatocyte nuclear factor 4α (HNF4α), constitutive androstane receptor (CAR) and pregnane X receptor (PXR).The expanding knowledge of NRs in NAFLD offers new avenues for targeted therapies, necessitating exploration of novel treatment strategies and optimization of existing approaches to combat this increasingly prevalent disease.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/uso terapêutico , Diabetes Mellitus Tipo 2/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Fígado/metabolismo
5.
Oncogene ; 43(2): 123-135, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37973952

RESUMO

USP11 is a member of the ubiquitin-specific protease family and plays a crucial role in tumor progression in various cancers. However, the precise mechanism by which USP11 promotes EMT and metastasis in hepatocellular carcinoma (HCC) is not fully understood. In this study, we demonstrated that the USP11 expression was dramatically upregulated in HCC tissues and cell lines. Increased USP11 expression was closely associated with tumor number, vascular invasion, and poor prognosis. Functional experiments demonstrated that USP11 markedly promoted metastasis and EMT in HCC via induction of the transcription factor Snail. Mechanistically, USP11 interacted with and deubiquitinated eEF1A1 on Lys439, thereby inhibiting its ubiquitin-mediated degradation. Subsequently, the elevated expression of eEF1A1 resulted in its binding to SP1, which in turn drove the binding of SP1 to its target HGF gene promoter to increase its transcription. This led to an enhanced expression of HGF and the activation of the downstream PI3K/AKT signaling pathway. We demonstrated that USP11 promotes EMT and metastasis in HCC via eEF1A1/SP1/HGF dependent-EMT. Our findings suggest that the USP11/ eEF1A1/SP1/HGF axis contributes to metastasis in HCC, and therefore, could be considered as a potential therapeutic target for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Hepáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Transição Epitelial-Mesenquimal/genética , Metástase Neoplásica , Tioléster Hidrolases/genética , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo
6.
Kidney Int ; 104(4): 769-786, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37482091

RESUMO

Tubulointerstitial fibrosis is considered the final convergent pathway of progressive chronic kidney diseases (CKD) regardless of etiology. However, mechanisms underlying kidney injury-induced fibrosis largely remain unknown. Recent studies have indicated that transcriptional intermediary factor 1γ (TIF1γ) inhibits the progression of fibrosis in other organs. Here, we found that TIF1γ was highly expressed in the cytoplasm and nucleus of the kidney proximal tubule. Interestingly, we found tubular TIF1γ expression was decreased in patients with CKD, including those with diabetes, hypertension, and IgA nephropathy, and in mouse models with experimental kidney fibrosis (unilateral ureteral obstruction [UUO], folic acid nephropathy [FAN], and aristolochic acid-induced nephrotoxicity). Tubule-specific knock out of TIF1γ in mice exacerbated UUO- and FAN-induced tubular cell polyploidy and subsequent fibrosis, whereas overexpression of kidney TIF1γ protected mice against kidney fibrosis. Mechanistically, in tubular epithelial cells, TIF1γ exerted an antifibrotic role via transforming growth factor-ß (TGF-ß)-dependent and -independent signaling. TIF1γ hindered TGF-ß signaling directly by inhibiting the formation and activity of the transcription factor Smad complex in tubular cells, and we discovered that TIF1γ suppressed epidermal growth factor receptor (EGFR) signaling upstream of TGF-ß signaling in tubular cells by ubiquitylating EGFR at its lysine 851/905 sites thereby promoting EGFR internalization and lysosomal degradation. Pharmacological inhibition of EGFR signaling attenuated exacerbated polyploidization and the fibrotic phenotype in mice with tubule deletion of TIF1γ. Thus, tubular TIF1γ plays an important role in kidney fibrosis by suppressing profibrotic EGFR and TGF-ß signaling. Hence, our findings suggest that maintaining homeostasis of tubular TIF1γ may be a new therapeutic option for treating tubulointerstitial fibrosis and subsequent CKD.


Assuntos
Insuficiência Renal Crônica , Obstrução Ureteral , Animais , Humanos , Camundongos , Células Epiteliais/metabolismo , Receptores ErbB/genética , Fibrose , Rim/metabolismo , Análise de Mediação , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/complicações , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo
7.
Cell Death Dis ; 13(10): 852, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207306

RESUMO

N6-methyladenosine (m6A) is a widely investigated RNA modification in studies on the "epigenetic regulation" of mRNAs that is ubiquitously present in eukaryotes. Abnormal changes in m6A levels are closely related to the regulation of RNA metabolism, heat shock stress, tumor occurrence, and development. m6A modifications are catalyzed by the m6A writer complex, which contains RNA methyltransferase-like 3 (METTL3), methyltransferase-like 14 (METTL14), Wilms tumor 1-associated protein (WTAP), and other proteins with methyltransferase (MTase) capability, such as RNA-binding motif protein 15 (RBM15), KIAA1429 and zinc finger CCCH-type containing 13 (ZC3H13). Although METTL3 is the main catalytic subunit, WTAP is a regulatory subunit whose function is to recruit the m6A methyltransferase complex to the target mRNA. Specifically, WTAP is required for the accumulation of METTL3 and METTL14 in nuclear speckles. In this paper, we briefly introduce the molecular mechanism of m6A modification. Then, we focus on WTAP, a component of the m6A methyltransferase complex, and introduce its structure, localization, and physiological functions. Finally, we describe its roles and mechanisms in cancer.


Assuntos
RNA , Proteínas WT1 , Adenosina/metabolismo , Metiltransferases/metabolismo , RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Biomark Res ; 10(1): 65, 2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36031658

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a type of cancer that affects the liver and has a high mortality rate. Long non-coding RNAs (lncRNAs) dysregulation can contribute to cancer occurrence and progression, although the underlying molecular pathways are mostly unclear. HOXC-AS3 was found to be considerably overexpressed in HCC in this investigation. The goal of this work was to look into the involvement of HOXC-AS3 in HCC and the various molecular pathways that underpin it. METHODS: Normal liver and paired HCC tissues from HCC patients were used to evaluate HOXC-AS3 expression by qRT-PCR. The role of HOXC-AS3 in HCC was assessed both in vitro and in vivo. RNA pulldown, RIP and co-IP were used to demonstrate the potential mechanism by which HOXC-AS3 regulates the progression of HCC. RESULTS: Using qRT-PCR, it was discovered that HOXC-AS3 was substantially expressed in HCC. In vitro and in vivo, overexpression of HOXC-AS3 aided proliferation and cell cycle progression. HOXC-AS3 interacted with CDK2 to facilitate CDK2's decreased binding to p21, resulting in enhanced CDK2 activity, which promoted the phosphorylation of Rb and the progression of HCC. CONCLUSIONS: HOXC-AS3 is highly expressed in HCC and can promote the progression of HCC by interacting with CDK2. Therefore, targeting HOXC-AS3 is very likely to provide a new strategy for the treatment of HCC and for improving patient prognosis.

9.
Biomark Res ; 10(1): 42, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672802

RESUMO

YAP1 (Yes-associated protein 1) is one of the principal factors that mediates oncogenesis by acting as a driver of gene expression. It has been confirmed to play an important role in organ volume control, stem cell function, tissue regeneration, tumorigenesis and tumor metastasis. Recent research findings show that YAP1 is correlated with the stemness of liver cancer stem cells, and liver cancer stem cells are closely associated with YAP1-induced tumor initiation and progression. This article reviews the advancements made in research on the mechanisms by which YAP1 promotes liver cancer stem cells and discusses some potential mechanisms that require further study.

10.
Clin Transl Med ; 11(11): e635, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34841685

RESUMO

BACKGROUND: Aberrant TAK1 (transforming growth factor ß-activated kinase 1) activity is known to be involved in a variety of malignancies, but the regulatory mechanisms of TAK1 remain poorly understood. GRAMD4 (glucosyltransferase Rab-like GTPase activator and myotubularin domain containing 4) is a newly discovered p53-independent proapoptotic protein with an unclear role in HCC (hepatocellular carcinoma). RESULTS: In this research, we found that GRAMD4 expression was lower in HCC samples, and its downregulation predicted worse prognosis for patients after surgical resection. Functionally, GRAMD4 inhibited HCC migration, invasion and metastasis. Mechanistically, GRAMD4 interacted with TAK1 to promote its protein degradation, thus, resulting in the inactivation of MAPK (Mitogen-activated protein kinase) and NF-κB pathways. Furthermore, GRAMD4 was proved to recruit ITCH (itchy E3 ubiquitin protein ligase) to promote the ubiquitination of TAK1. Moreover, high expression of TAK1 was correlated with low expression of GRAMD4 in HCC patients. CONCLUSIONS: GRAMD4 inhibits the migration and metastasis of HCC, mainly by recruiting ITCH to promote the degradation of TAK1, which leads to the inactivation of MAPK and NF-κB signalling pathways.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , MAP Quinase Quinase Quinases/antagonistas & inibidores , Proteínas Mitocondriais/farmacologia , Metástase Neoplásica/tratamento farmacológico , Carcinoma Hepatocelular/fisiopatologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/fisiopatologia , MAP Quinase Quinase Quinases/uso terapêutico , Proteínas Mitocondriais/uso terapêutico , Metástase Neoplásica/prevenção & controle , Proteínas Repressoras/farmacologia , Proteínas Repressoras/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Ubiquitina-Proteína Ligases/farmacologia , Ubiquitina-Proteína Ligases/uso terapêutico
11.
Mol Cancer ; 20(1): 38, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627125

RESUMO

The DEAD-box helicase family member DDX3X (DBX, DDX3) functions in nearly all stages of RNA metabolism and participates in the progression of many diseases, including virus infection, inflammation, intellectual disabilities and cancer. Over two decades, many studies have gradually unveiled the role of DDX3X in tumorigenesis and tumour progression. In fact, DDX3X possesses numerous functions in cancer biology and is closely related to many well-known molecules. In this review, we describe the function of DDX3X in RNA metabolism, cellular stress response, innate immune response, metabolic stress response in pancreatic ß cells and embryo development. Then, we focused on the role of DDX3X in cancer biology and systematically demonstrated its functions in various aspects of tumorigenesis and development. To provide a more intuitive understanding of the role of DDX3X in cancer, we summarized its functions and specific mechanisms in various types of cancer and presented its involvement in cancer-related signalling pathways.


Assuntos
RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , Neoplasias/metabolismo , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Imunidade Inata , Domínios Proteicos , RNA/metabolismo
12.
Cell Death Dis ; 11(11): 983, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33199694

RESUMO

FAM134B (also called JK-1, RETREG1), a member of the family with sequence similarity 134, was originally discovered as an oncogene in esophageal squamous cell carcinoma. However, its most famous function is that of an ER-phagy-regulating receptor. Over the decades, the powerful biological functions of FAM134B were gradually revealed. Overwhelming evidence indicates that its dysfunction is related to pathophysiological processes such as neuropathy, viral replication, inflammation, and cancer. This review describes the biological functions of FAM134B, focusing on its role in ER-phagy. In addition, we summarize the diseases in which it is involved and review the underlying mechanisms.


Assuntos
Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas de Membrana/química , Camundongos
13.
Mol Med Rep ; 22(6): 4938-4946, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33173981

RESUMO

Previous studies have suggested that human exposure to bisphenol A (BPA) and soy isoflavones (SIFs) can occur during pregnancy. The combination of these chemicals is hypothesized to have a toxic impact on the fetus. While BPA is an industrial chemical used widely in the manufacture of polycarbonate plastics and epoxy resins, SIFs are naturally occurring estrogen­like phytoestrogens. To determine the impact of the combination of BPA and SIFs on fetal development, the body weight, organ weight, anogenital distance and histopathological changes in the testes of F1 offspring were assessed in mice. Hormonal effects were determined by measuring serum levels of estrogen receptor (ESR), follicle­stimulating hormone (FSH), luteinizing hormone (LH) and testosterone (T). Additionally, mitochondrial DNA copy numbers, and the serum levels of malondialdehyde and superoxide dismutase, were determined to evaluate alterations in oxidative stress and potential toxicity. Exposure to BPA increased the body weight of the pups and reduced the ratio of anogenital distance to body weight, as well as testes weight. Moreover, BPA exposure also induced testicular lesions. The seminiferous tubules of testis were denatured in varying degrees and the lumen wall structure was disordered. The levels of ESR in all offspring and the T levels in male offspring significantly increased, compared with controls. Co­exposure to BPA and SIFs exacerbated these changes in body weight, testicular lesions and hormonal levels, relative to BPA exposure alone. Additionally, oxidative damage was only induced by high­dose BPA. Collectively, these findings suggested that BPA and SIFs could have synergistic effect on the reproductive system, which could be mediated by the regulation of ESR expression and testosterone release.


Assuntos
Compostos Benzidrílicos/efeitos adversos , Isoflavonas/efeitos adversos , Fenóis/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Feminino , Hormônio Foliculoestimulante/sangue , Hormônio Foliculoestimulante/metabolismo , Hormônio Luteinizante/sangue , Hormônio Luteinizante/efeitos dos fármacos , Masculino , Malondialdeído/análise , Malondialdeído/sangue , Camundongos , Camundongos Endogâmicos , Tamanho do Órgão/efeitos dos fármacos , Estresse Oxidativo , Gravidez , Receptores de Estrogênio/sangue , Receptores de Estrogênio/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Superóxido Dismutase/análise , Superóxido Dismutase/sangue , Testículo/metabolismo , Testosterona/sangue , Testosterona/metabolismo
14.
Am J Cancer Res ; 10(2): 662-673, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32195034

RESUMO

Type-2 11ß-hydroxysteroid dehydrogenase (HSD11B2) is a key enzyme which converts cortisol to inactive cortisone and is involved in tumor progression and metastasis. Several studies have shown that the promotion of tumor progression and metastasis by HSD11B2 resulted from its physiological function of inactivating glucocorticoids (GC). However, the underlying molecular mechanisms by which HSD11B2 drives metastasis, in addition to inactivating GC, are still unclear. In our study, a series of in vivo and in vitro assays were performed to determine the function of HSD11B2 and the possible mechanisms underlying its role in CRC metastasis. mRNA transcriptome array analysis was used to identify the possible downstream targets of HSD11B2. We found that the ectopic expression of HSD11B2 significantly promoted the migration, invasion and metastasis of colorectal cancer (CRC) cells both in vitro and in vivo, while it did not affect their proliferation in either case. Mechanically, HSD11B2 appeared to enhance cell migration and invasion by upregulating the expression of fibroblast growth factor binding protein 1 (Fgfbp1), and subsequently increasing the phosphorylation of AKT. Furthermore, AKT activation partially mediated the increased expression of Fgfbp1 induced by HSD11B2. HSD11B2 expression was positively correlated with Fgfbp1 and p-AKT expression in clinical samples of CRC. Additionally, knockdown of either Fgfbp1 or AKT impaired the migration and invasion capability of CRC cells with HSD11B2 overexpression, suggesting that HSD11B2 promoted the migration, invasion and metastasis of CRC cells via the Fgfbp1-AKT pathway. Therefore, targeting HSD11B2 or Fgfbp1 may be a novel treatment strategy for inhibiting the metastasis of CRC.

15.
J Exp Clin Cancer Res ; 38(1): 273, 2019 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-31228948

RESUMO

BACKGROUND: DEPTOR is an endogenous inhibitor of mTORC1 and mTORC2 that plays a vital role in the progression of human malignances. However, the biological function of DEPTOR in HCC metastasis and the underlying molecular mechanisms are still unclear. METHODS: Western blot analysis and immunohistochemistry(IHC) were employed to examine DEPTOR expression in HCC cell lines and tissues. A series of in vivo and in vitro assays were performed to determine the function of DEPTOR and the possible mechanisms underlying its role in HCC metastasis. RESULTS: We found that DEPTOR was frequently overexpressed in HCC tissues, and its high expression was associated with high serum AFP levels, increased tumor size, vascular invasion and more advanced TMN and BCLC stage, as well as an overall poor prognosis. Functional experiments demonstrated that DEPTOR silencing inhibited the proliferation and mobility of HCC cells in vitro and suppressed tumor growth and metastasis of HCC cells in vivo. Accordingly, DEPTOR overexpression promoted the invasion and metastasis of HCC cells in vitro and in vivo, but had no effect on cell proliferation in vitro. Overexpression of DEPTOR induced EMT by snail induction. Conversely, knockdown of snail expression impaired the DEPTOR-induced migration, invasion and EMT of HCC cells. Furthermore, we found that the increase of snail expression by DEPTOR overexpression was due to an activation of TGF-ß1-smad3/smad4 signaling possibly through feedback inhibition of mTOR. CONCLUSION: DEPTOR promotes the EMT and metastasis of HCC cells by activating the TGF-ß1-smad3/smad4-snail pathway via mTOR inhibition. Therefore, targeting DEPTOR may be an ideal treatment strategy for inhibiting the growth and metastasis of HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/patologia , Transdução de Sinais , Regulação para Cima , Adulto , Idoso , Animais , Comunicação Autócrina , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Análise de Sobrevida , Serina-Treonina Quinases TOR/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
16.
Phys Chem Chem Phys ; 21(19): 9975-9986, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31041984

RESUMO

Density functional theory (DFT) calculations have been employed to probe the reaction mechanism of NO reduction with CO over a Cu1/PMA (PMA is the phosphomolybdate, Cs3PMo12O40) single-atom catalyst (SAC). Several important aspects of the catalytic system were addressed, including the generation of oxygen vacancies (Ov), formation of N2O2 intermediates, scission of the N-O bond of N2O2 intermediates to form N2O or N2, and decomposition of N2O to form N2. Unlike most previous theoretical studies, which tend to explore the reaction mechanism of polyoxometalate (POM) systems based on the isolated anionic unit, here, we build a model of the catalytic system with neutral species by introduction of counter cations to model the solid structure of the Cu1/PMA SAC. The major findings of our present study are: (1) CO adsorption on Cu sites leads to the formation of cationic Cu carbonyl species; (2) the Oc atom at the surface of the PMA support can easily react with the adsorbed CO to generate a Cu-Ov pair; (3) the Cu-Ov pair embedded on PMA is found to be the active site, not only for the formation of N2O2* by the reaction of two NO molecules via an Eley-Rideal pathway but also for the decomposition of N2O to form N2; (4) the adsorption of a NO molecule on the Cu-Ov pair with a bridging model results in charge transfer from the Cu atom to the π* antibonding orbital of the NO molecule; (5) IR spectroscopy of the key intermediates has been identified based on our DFT calculations; and (6) the Cu atom serves as an electron acceptor in Ov formation steps and an electron donor in N2O2 decomposition steps, and thus represents an electron reservoir. These results suggest that the POM-supported SAC with the cheaper Cu element is an efficient catalyst for the reaction between CO and NO.

17.
Oncol Lett ; 16(1): 991-997, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29963174

RESUMO

Liver cancer is one of the leading causes of cancer associated mortality, particularly in eastern Asia. Autophagy serves an important role in carcinogenesis. Previous studies have reported that TRAP1 is a novel and efficient therapeutic target in various tumors. However, the associations between autophagy and TRAP1 is not clear. In the present study, autophagy activity and TRAP1 expression were examined in 4 different liver cancer cell lines (HepG2, Hep3B2.1-7, Sk-hep1 and HepG2.2.15) with or without rapamycin induction. The cell autophagy level was validated by monodansylcadaverine fluorescent staining, and the expression levels of Beclin1 and light chain (LC)-3-II/LC3-I. The mRNA and protein expression levels of tumor necrosis factor receptor-associated protein-1 (TRAP-1), Beclin1 and LC3-II/LC3-I were measured by reverse transcription-quantitative polymerase chain reaction, Protein Simple Western and western blot analysis. HepG2 cells, with medium invasive ability, exerted the highest basal level of autophagy and TRAP1 expression. In addition, hepatitis B (HBV) infection in HepG2 cells inhibited autophagy activity and TRAP1 expression. Rapamycin treatment also significantly enhanced autophagy in the 4 liver cancer cell lines and increased TRAP1 expression in HepG2, Hep3B2.1-7 and Sk-hep1 cells. Thus, the cell invasive ability, HBV infection and autophagy induction had different effects on TRAP1 expression, and TRAP1 may be associated with autophagy in liver cancer.

18.
Mol Med Rep ; 16(4): 5393-5405, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28849100

RESUMO

The clinical significance of microRNA (miR)­136­5p in hepatocellular carcinoma (HCC) has not been verified. Therefore, in the current study, the authors aimed to explore miR­136­5p expression and its clinical significance in HCC, as well as to investigate its potential target genes function. The authors detected the levels of miR­136­5p in 101 pairs of HCC and para­cancer tissues via reverse transcription­quantitative polymerase chain reaction. Gene Expression Omnibus database and the Cancer Genome Atlas (TCGA) database were used to further verify the clinical significance of miR­136­5p expression in HCC. The target genes prediction analysis of miR­136­5p, natural language processing (NLP) analysis of HCC in PubMed and gene functional enrichment analysis were conducted. The miR­136­5p level was markedly downregulated in HCC tissue, compared to para­non­tumor tissue. MiR­136­5p expression decreased in HCC patients with metastasis (P=0.004), advance TNM stage (P<0.001), portal vein tumor embolus (P=0.007) and vaso­invasion (P=0.003), compared with those HCC patients with non­metastasis, early TNM stage, non­portal vein tumor embolus and non­vaso­invasion, respectively. In the TCGA database, downregulated miR­136­5p was also observed in HCC tissue compared to normal liver tissue (P<0.001). There were 178 genes obtained from the overlap between predicted targets and NLP analysis. GO and KEGG pathway analyses revealed some significant pathways related to cancers. Downregulation of miR­136­5p may be responsible for the carcinogenesis and aggressiveness of HCC. miR­136­5p may act as an anti­carcinoma miRNA, which is essential for HCC progression through the regulation of various signaling pathways. Thus, miR­136­5p interaction may provide a novel strategy for HCC treatment.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/genética , Interferência de RNA , Adulto , Idoso , Biomarcadores Tumorais , Biologia Computacional , Bases de Dados Genéticas , Feminino , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Anotação de Sequência Molecular , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Curva ROC , Transdução de Sinais
19.
Artigo em Inglês | MEDLINE | ID: mdl-24639882

RESUMO

Objective. To observe the effect of preventive acupuncture and moxibustion on blood lipid of menopause rats. Methods. Seventy 10-month-old SD rats with estrous cycle disorders were divided into three control groups and four treatment groups (n = 10/group) and another ten 3.5-month-old female SD rats were chosen as young control group. Preventive acupuncture and moxibustion were applied at Guanyuan (CV 4). Body weight growth rate has been recorded. Plasma total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL), and high density lipoprotein (HDL) levels and uterus E 2 level were measured. Results. Compared to young control group, plasma TC and LDL increased and uterus E 2 reduced significantly in 12-month-old control group. Compared to 12-month-old control group, plasma TC and LDL level and body weight growth rate decreased while HDL level increased remarkably in preventive acupuncture 12-month-old group. Compared to 14-month-old control group, plasma TC level and body weight growth rate decreased remarkably in preventive moxibustion 14-month-old group. Conclusions. Preventive acupuncture and moxibustion can significantly decrease the plasma TG and LDL, increase the plasma HDL, and prevent fat accumulation. Our finding suggests that preventive acupuncture and moxibustion have beneficial effects on blood lipid. Different treatment effects were found between preventive acupuncture and preventive moxibustion.

20.
J Chromatogr A ; 1329: 17-23, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24418234

RESUMO

In this work, we proposed a simple co-mixing method to fabricate magnetic molecularly imprinted polymers (magnetic MIPs). MIPs were commercial products while magnetic nanoparticles (MNPs) were prepared by chemical oxidation and solvothermal methods. When MNPs and MIPs (with mass ratio 1:1) were co-mixed and vortexed evenly in methanol, they could assemble into magnetic composites spontaneously and thus be magnetically separable. To testify the feasibility of the magnetic composites in sample preparation, the resultant magnetic MIPs were applied as sorbents for magnetic solid-phase extraction (MSPE) of fluoroquinolones (FQs) in milk samples. Under optimized conditions, a rapid, convenient, and efficient method for the determination of three FQs in milk samples was established by magnetic MIPs based MSPE coupling with high performance liquid chromatography with ultraviolet detector (HPLC-UV). The limits of detection (LODs) for three FQs were found to be 1.8-3.2ng/g. The intra- and inter-day relative standard deviations (RSDs) were less than 9.5% and 12.5%, respectively. The recoveries of FQs for two spiked milk samples were in the range from 94.0% to 124.4% with the RSDs less than 11.6%.


Assuntos
Fluoroquinolonas/análise , Nanopartículas de Magnetita/química , Nanopartículas Metálicas/química , Leite/química , Impressão Molecular/métodos , Polímeros/síntese química , Extração em Fase Sólida/métodos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Compostos Férricos/química , Fluoroquinolonas/química , Análise de Alimentos , Nanopartículas de Magnetita/ultraestrutura , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA