RESUMO
Maintenance of genome integrity requires tight control of DNA damage response (DDR) signalling and repair, with phosphorylation and ubiquitination representing key elements. How these events are coordinated to achieve productive DNA repair remains elusive. Here we identify the ubiquitin-conjugating enzyme UBE2D3 as a regulator of ATM kinase-induced DDR that promotes non-homologous end-joining (NHEJ) at telomeres. UBE2D3 contributes to DDR-induced chromatin ubiquitination and recruitment of the NHEJ-promoting factor 53BP1, both mediated by RNF168 upon ATM activation. Additionally, UBE2D3 promotes NHEJ by limiting RNF168 accumulation and facilitating ATM-mediated phosphorylation of KAP1-S824. Mechanistically, defective KAP1-S824 phosphorylation and telomeric NHEJ upon UBE2D3-deficiency are linked to RNF168 hyperaccumulation and aberrant PP2A phosphatase activity. Together, our results identify UBE2D3 as a multi-level regulator of NHEJ that orchestrates ATM and RNF168 activities. Moreover, they reveal a negative regulatory circuit in the DDR that is constrained by UBE2D3 and consists of RNF168- and phosphatase-mediated restriction of KAP1 phosphorylation.
Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Reparo do DNA por Junção de Extremidades , Transdução de Sinais , Proteína 28 com Motivo Tripartido , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Enzimas de Conjugação de Ubiquitina , Ubiquitina-Proteína Ligases , Ubiquitinação , Enzimas de Conjugação de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Fosforilação , Proteína 28 com Motivo Tripartido/metabolismo , Proteína 28 com Motivo Tripartido/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Células HEK293 , Telômero/metabolismo , Dano ao DNA , Cromatina/metabolismo , AnimaisRESUMO
BRCA1/2-mutated cancer cells adapt to the genome instability caused by their deficiency in homologous recombination (HR). Identification of these adaptive mechanisms may provide therapeutic strategies to target tumors caused by the loss of these genes. In the present study, we report genome-scale CRISPR-Cas9 synthetic lethality screens in isogenic pairs of BRCA1- and BRCA2-deficient cells and identify CIP2A as an essential gene in BRCA1- and BRCA2-mutated cells. CIP2A is cytoplasmic in interphase but, in mitosis, accumulates at DNA lesions as part of a complex with TOPBP1, a multifunctional genome stability factor. Unlike PARP inhibition, CIP2A deficiency does not cause accumulation of replication-associated DNA lesions that require HR for their repair. In BRCA-deficient cells, the CIP2A-TOPBP1 complex prevents lethal mis-segregation of acentric chromosomes that arises from impaired DNA synthesis. Finally, physical disruption of the CIP2A-TOPBP1 complex is highly deleterious in BRCA-deficient tumors, indicating that CIP2A represents an attractive synthetic lethal therapeutic target for BRCA1- and BRCA2-mutated cancers.
Assuntos
Neoplasias , Mutações Sintéticas Letais , Proteínas de Transporte/genética , Instabilidade Cromossômica , DNA , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica/genética , Recombinação Homóloga , Humanos , Proteínas Nucleares/genéticaRESUMO
The response to DNA damage is critical for cellular homeostasis, tumor suppression, immunity, and gametogenesis. In order to provide an unbiased and global view of the DNA damage response in human cells, we undertook 31 CRISPR-Cas9 screens against 27 genotoxic agents in the retinal pigment epithelium-1 (RPE1) cell line. These screens identified 890 genes whose loss causes either sensitivity or resistance to DNA-damaging agents. Mining this dataset, we discovered that ERCC6L2 (which is mutated in a bone-marrow failure syndrome) codes for a canonical non-homologous end-joining pathway factor, that the RNA polymerase II component ELOF1 modulates the response to transcription-blocking agents, and that the cytotoxicity of the G-quadruplex ligand pyridostatin involves trapping topoisomerase II on DNA. This map of the DNA damage response provides a rich resource to study this fundamental cellular system and has implications for the development and use of genotoxic agents in cancer therapy.
Assuntos
Dano ao DNA , Redes Reguladoras de Genes/fisiologia , Aminoquinolinas/farmacologia , Animais , Sistemas CRISPR-Cas/genética , Linhagem Celular , Citocromo-B(5) Redutase/genética , Citocromo-B(5) Redutase/metabolismo , Dano ao DNA/efeitos dos fármacos , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Humanos , Camundongos , Ácidos Picolínicos/farmacologia , RNA Guia de Cinetoplastídeos/metabolismo , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genéticaRESUMO
53BP1 is a chromatin-binding protein that regulates the repair of DNA double-strand breaks by suppressing the nucleolytic resection of DNA termini1,2. This function of 53BP1 requires interactions with PTIP3 and RIF14-9, the latter of which recruits REV7 (also known as MAD2L2) to break sites10,11. How 53BP1-pathway proteins shield DNA ends is currently unknown, but there are two models that provide the best potential explanation of their action. In one model the 53BP1 complex strengthens the nucleosomal barrier to end-resection nucleases12,13, and in the other 53BP1 recruits effector proteins with end-protection activity. Here we identify a 53BP1 effector complex, shieldin, that includes C20orf196 (also known as SHLD1), FAM35A (SHLD2), CTC-534A2.2 (SHLD3) and REV7. Shieldin localizes to double-strand-break sites in a 53BP1- and RIF1-dependent manner, and its SHLD2 subunit binds to single-stranded DNA via OB-fold domains that are analogous to those of RPA1 and POT1. Loss of shieldin impairs non-homologous end-joining, leads to defective immunoglobulin class switching and causes hyper-resection. Mutations in genes that encode shieldin subunits also cause resistance to poly(ADP-ribose) polymerase inhibition in BRCA1-deficient cells and tumours, owing to restoration of homologous recombination. Finally, we show that binding of single-stranded DNA by SHLD2 is critical for shieldin function, consistent with a model in which shieldin protects DNA ends to mediate 53BP1-dependent DNA repair.
Assuntos
Reparo do DNA , Complexos Multiproteicos/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Quebras de DNA de Cadeia Dupla , DNA de Cadeia Simples/genética , Feminino , Genes BRCA1 , Humanos , Switching de Imunoglobulina/genética , Camundongos , Modelos Biológicos , Complexos Multiproteicos/química , Complexos Multiproteicos/deficiência , Complexos Multiproteicos/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas de Ligação a Telômeros/metabolismo , Proteína Supressora de Tumor p53/deficiênciaRESUMO
The main pathways for the repair of DNA double strand breaks (DSBs) are non-homologous end-joining (NHEJ) and homologous recombination directed repair (HDR). These operate mutually exclusive and are activated by 53BP1 and BRCA1, respectively. As HDR can only succeed in the presence of an intact copy of replicated DNA, cells employ several mechanisms to inactivate HDR in the G1 phase of cell cycle. As cells enter S-phase, these inhibitory mechanisms are released and HDR becomes active. However, during DNA replication, NHEJ and HDR pathways are both functional and non-replicated and replicated DNA regions co-exist, with the risk of aberrant HDR activity at DSBs in non-replicated DNA. It has become clear that DNA repair pathway choice depends on inhibition of DNA end-resection by 53BP1 and its downstream factors RIF1 and MAD2L2. However, it is unknown how MAD2L2 accumulates at DSBs to participate in DNA repair pathway control and how the NHEJ and HDR repair pathways are appropriately activated at DSBs with respect to the replication status of the DNA, such that NHEJ acts at DSBs in pre-replicative DNA and HDR acts on DSBs in post-replicative DNA. Here we show that MAD2L2 is recruited to DSBs in H4K20 dimethylated chromatin by forming a protein complex with 53BP1 and RIF1 and that MAD2L2, similar to 53BP1 and RIF1, suppresses DSB accumulation of BRCA1. Furthermore, we show that the replication status of the DNA locally ensures the engagement of the correct DNA repair pathway, through epigenetics. In non-replicated DNA, saturating levels of the 53BP1 binding site, di-methylated lysine 20 of histone 4 (H4K20me2), lead to robust 53BP1-RIF1-MAD2L2 recruitment at DSBs, with consequent exclusion of BRCA1. Conversely, replication-associated 2-fold dilution of H4K20me2 promotes the release of the 53BP1-RIF1-MAD2L2 complex and favours the access of BRCA1. Thus, the differential H4K20 methylation status between pre-replicative and post-replicative DNA represents an intrinsic mechanism that locally ensures appropriate recruitment of the 53BP1-RIF1-MAD2L2 complex at DNA DSBs, to engage the correct DNA repair pathway.
Assuntos
Cromatina/metabolismo , Reparo do DNA , Replicação do DNA , Histonas/metabolismo , Lisina/metabolismo , Proteínas Mad2/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteína BRCA1/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Quebras de DNA de Cadeia Dupla , Fase G2 , Células HeLa , Humanos , Metilação , Modelos Biológicos , Ligação ProteicaRESUMO
Programmable nucleases, such as Cas9, are used for precise genome editing by homology-dependent repair (HDR). However, HDR efficiency is constrained by competition from other double-strand break (DSB) repair pathways, including non-homologous end-joining (NHEJ). We report the discovery of a genetically encoded inhibitor of 53BP1 that increases the efficiency of HDR-dependent genome editing in human and mouse cells. 53BP1 is a key regulator of DSB repair pathway choice in eukaryotic cells and functions to favor NHEJ over HDR by suppressing end resection, which is the rate-limiting step in the initiation of HDR. We screened an existing combinatorial library of engineered ubiquitin variants for inhibitors of 53BP1. Expression of one variant, named i53 (inhibitor of 53BP1), in human and mouse cells, blocked accumulation of 53BP1 at sites of DNA damage and improved gene targeting and chromosomal gene conversion with either double-stranded DNA or single-stranded oligonucleotide donors by up to 5.6-fold. Inhibition of 53BP1 is a robust method to increase efficiency of HDR-based precise genome editing.
Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Animais , Dano ao DNA/genética , Reparo do DNA por Junção de Extremidades/genética , Reparo do DNA/genética , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Reparo de DNA por Recombinação/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/antagonistas & inibidoresRESUMO
CSB, a member of the SWI2/SNF2 superfamily, is implicated in DNA double-strand break (DSB) repair. However, how it regulates this repair process is poorly understood. Here we uncover that CSB interacts via its newly identified winged helix domain with RIF1, an effector of 53BP1, and that this interaction mediates CSB recruitment to DSBs in S phase. At DSBs, CSB remodels chromatin by evicting histones, which limits RIF1 and its effector MAD2L2 but promotes BRCA1 accumulation. The chromatin remodeling activity of CSB requires not only damage-induced phosphorylation on S10 by ATM but also cell cycle-dependent phosphorylation on S158 by cyclin A-CDK2. Both modifications modulate the interaction of the CSB N-terminal region with its ATPase domain, the activity of which has been previously reported to be autorepressed by the N-terminal region. These results suggest that ATM and CDK2 control the chromatin remodeling activity of CSB in the regulation of DSB repair pathway choice.
Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Montagem e Desmontagem da Cromatina , Quinase 2 Dependente de Ciclina/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Motivos de Aminoácidos , Proteína BRCA1/metabolismo , Linhagem Celular Tumoral , Ciclina A/metabolismo , Células HCT116 , Humanos , Proteínas Mad2/metabolismo , Fosforilação , Fase S , Proteínas de Ligação a Telômeros/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismoRESUMO
Appropriate repair of DNA lesions and the inhibition of DNA repair activities at telomeres are crucial to prevent genomic instability. By fuelling the generation of genetic alterations and by compromising cell viability, genomic instability is a driving force in cancer and ageing. Here we identify MAD2L2 (also known as MAD2B or REV7) through functional genetic screening as a novel factor controlling DNA repair activities at mammalian telomeres. We show that MAD2L2 accumulates at uncapped telomeres and promotes non-homologous end-joining (NHEJ)-mediated fusion of deprotected chromosome ends and genomic instability. MAD2L2 depletion causes elongated 3' telomeric overhangs, indicating that MAD2L2 inhibits 5' end resection. End resection blocks NHEJ while committing to homology-directed repair, and is under the control of 53BP1, RIF1 and PTIP. Consistent with MAD2L2 promoting NHEJ-mediated telomere fusion by inhibiting 5' end resection, knockdown of the nucleases CTIP or EXO1 partially restores telomere-driven genomic instability in MAD2L2-depleted cells. Control of DNA repair by MAD2L2 is not limited to telomeres. MAD2L2 also accumulates and inhibits end resection at irradiation-induced DNA double-strand breaks and promotes end-joining of DNA double-strand breaks in several settings, including during immunoglobulin class switch recombination. These activities of MAD2L2 depend on ATM kinase activity, RNF8, RNF168, 53BP1 and RIF1, but not on PTIP, REV1 and REV3, the latter two acting with MAD2L2 in translesion synthesis. Together, our data establish MAD2L2 as a crucial contributor to the control of DNA repair activity by 53BP1 that promotes NHEJ by inhibiting 5' end resection downstream of RIF1.