Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Tomography ; 10(10): 1665-1675, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39453039

RESUMO

BACKGROUND: The calcaneal enthesis, an osseous footprint where the Achilles tendon seamlessly integrates with the bone, represents a complex interface crucial for effective force transmission. Bone adapts to mechanical stress and remodels based on the applied internal and external forces. This study explores the relationship between the elasticity of the Achilles tendon enthesis and the bone microstructure in the calcaneal crescent. METHODS: In total, 19 calcaneal-enthesis sections, harvested from 10 fresh-frozen human cadaveric foot-ankle specimens (73.8 ± 6.0 years old, seven female), were used in this study. Indentation tests were performed at the enthesis region, and Hayes' elastic modulus was calculated for each specimen. Micro-CT scanning was performed at 50-micron voxel size to assess trabecular bone microstructure within six regions of interest (ROIs) and the cortical bone thickness along the calcaneal crescent. RESULTS: Significant Spearman correlations were observed between the enthesis elastic modulus and trabecular bone thickness in the distal entheseal (ROI 3) and proximal plantar (ROI 4) regions (R = 0.786 and 0.518, respectively). CONCLUSION: This study highlights the potential impacts of Achilles tendon enthesis on calcaneal bone microstructure, which was pronounced in the distal calcaneal enthesis, suggesting regional differences in load transfer mechanism that require further investigation.


Assuntos
Tendão do Calcâneo , Cadáver , Calcâneo , Módulo de Elasticidade , Microtomografia por Raio-X , Humanos , Tendão do Calcâneo/diagnóstico por imagem , Tendão do Calcâneo/fisiologia , Calcâneo/diagnóstico por imagem , Calcâneo/fisiologia , Feminino , Idoso , Módulo de Elasticidade/fisiologia , Masculino , Microtomografia por Raio-X/métodos , Idoso de 80 Anos ou mais
2.
MAGMA ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126439

RESUMO

OBJECTIVE: To assess and improve the reliability of the ultrashort echo time quantitative magnetization transfer (UTE-qMT) modeling of the cortical bone. MATERIALS AND METHODS: Simulation-based digital phantoms were created that mimic the UTE-qMT properties of cortical bones. A wide range of SNR from 25 to 200 was simulated by adding different levels of noise to the synthesized MT-weighted images to assess the effect of SNR on UTE-qMT fitting results. Tensor-based denoising algorithm was applied to improve the fitting results. These results from digital phantom studies were validated via ex vivo rat leg bone scans. RESULTS: The selection of initial points for nonlinear fitting and the number of data points tested for qMT analysis have minimal effect on the fitting result. Magnetization exchange rate measurements are highly dependent on the SNR of raw images, which can be substantially improved with an appropriate denoising algorithm that gives similar fitting results from the raw images with an 8-fold higher SNR. DISCUSSION: The digital phantom approach enables the assessment of the reliability of bone UTE-qMT fitting by providing the known ground truth. These findings can be utilized for optimizing the data acquisition and analysis pipeline for UTE-qMT imaging of cortical bones.

3.
NMR Biomed ; : e5237, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39155273

RESUMO

Magnetization transfer (MT) magnetic resonance imaging (MRI) can be used to estimate the fraction of water and macromolecular proton pools in tissues. MT modeling paired with ultrashort echo time acquisition (UTE-MT modeling) has been proposed to improve the evaluation of the myotendinous junction and fibrosis in muscle tissues, which the latter increases with aging. This study aimed to determine if the UTE-MT modeling technique is sensitive to age-related changes in the skeletal muscles of the lower leg. Institutional review board approval was obtained, and all recruited subjects provided written informed consent. The legs of 31 healthy younger (28.1 ± 6.1 years old, BMI = 22.3 ± 3.5) and 20 older (74.7 ± 5.5 years old, BMI = 26.7 ± 5.9) female subjects were imaged using UTE sequences on a 3 T MRI scanner. MT ratio (MTR), macromolecular fraction (MMF), macromolecular T2 (T2-MM), and water T2 (T2-W) were calculated using UTE-MT modeling for the anterior tibialis (ATM), posterior tibialis (PTM), soleus (SM), and combined lateral muscles. Results were compared between groups using the Wilcoxon rank sum test. Three independent observers selected regions of interest (ROIs) and processed UTE-MRI images separately, and the intraclass correlation coefficient (ICC) was calculated for a reproducibility study. Significantly lower mean MTR and MMF values were present in the older compared with the younger group in all studied lower leg muscles. T2-MM showed significantly lower values in the older group only for PTM and SM muscles. In contrast, T2-W showed significantly higher values in the older group. The age-related differences were more pronounced for MMF (-17 to -19%) and T2-W (+20 to 47%) measurements in all muscle groups compared with other investigated MR measures. ICCs were higher than 0.93, indicating excellent consistency between the ROI selection and MRI measurements of independent readers. As demonstrated by significant differences between younger and older groups, this research emphasizes the potential of UTE-MT MRI techniques in evaluating age-related skeletal muscle changes.

4.
NMR Biomed ; : e5253, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39197467

RESUMO

Compositional changes can occur in the osteochondral junction (OCJ) during the early stages and progressive disease evolution of knee osteoarthritis (OA). However, conventional magnetic resonance imaging (MRI) sequences are not able to image these regions efficiently because of the OCJ region's rapid signal decay. The development of new sequences able to image and quantify OCJ region is therefore highly desirable. We developed a comprehensive ultrashort echo time (UTE) MRI protocol for quantitative assessment of OCJ region in the knee joint, including UTE variable flip angle technique for T1 mapping, UTE magnetization transfer (UTE-MT) modeling for macromolecular proton fraction (MMF) mapping, UTE adiabatic T1ρ (UTE-AdiabT1ρ) sequence for T1ρ mapping, and multi-echo UTE sequence for T2* mapping. B1 mapping based on the UTE actual flip angle technique was utilized for B1 correction in T1, MMF, and T1ρ measurements. Ten normal and one abnormal cadaveric human knee joints were scanned on a 3T clinical MRI scanner to investigate the feasibility of OCJ imaging using the proposed protocol. Volumetric T1, MMF, T1ρ, and T2* maps of the OCJ, as well as the superficial and full-thickness cartilage regions, were successfully produced using the quantitative UTE imaging protocol. Significantly lower T1, T1ρ, and T2* relaxation times were observed in the OCJ region compared with those observed in both the superficial and full-thickness cartilage regions, whereas MMF showed significantly higher values in the OCJ region. In addition, all four UTE biomarkers showed substantial differences in the OCJ region between normal and abnormal knees. These results indicate that the newly developed 3D quantitative UTE imaging techniques are feasible for T1, MMF, T1ρ, and T2* mapping of knee OCJ, representative of a promising approach for the evaluation of compositional changes in early knee OA.

5.
Neuroimage ; 296: 120666, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830440

RESUMO

Direct imaging of semi-solid lipids, such as myelin, is of great interest as a noninvasive biomarker of neurodegenerative diseases. Yet, the short T2 relaxation times of semi-solid lipid protons hamper direct detection through conventional magnetic resonance imaging (MRI) pulse sequences. In this study, we examined whether a three-dimensional ultrashort echo time (3D UTE) sequence can directly acquire signals from membrane lipids. Membrane lipids from red blood cells (RBC) were collected from commercially available blood as a general model of the myelin lipid bilayer and subjected to D2O exchange and freeze-drying for complete water removal. Sufficiently high MR signals were detected with the 3D UTE sequence, which showed an ultrashort T2* of ∼77-271 µs and a short T1 of ∼189 ms for semi-solid RBC membrane lipids. These measurements can guide designing UTE-based sequences for direct in vivo imaging of membrane lipids.


Assuntos
Membrana Eritrocítica , Imageamento por Ressonância Magnética , Lipídeos de Membrana , Bainha de Mielina , Humanos , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina/química , Membrana Eritrocítica/química , Membrana Eritrocítica/metabolismo , Lipídeos de Membrana/química , Liofilização , Eritrócitos/metabolismo
6.
Quant Imaging Med Surg ; 14(4): 3146-3156, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617168

RESUMO

Background: Tendon and bone comprise a critical interrelating unit. Bone loss, including that seen with osteopenia (OPe) or osteoporosis (OPo), may be associated with a reduction in tendon quality, though this remains incompletely investigated. Clinical magnetic resonance imaging (MRI) sequences cannot directly detect signals from tendons because of the very short T2. Clinical MRI may detect high-graded abnormalities by changes in the adjacent structures like bone. However, ultrashort echo time MRI (UTE-MRI) can capture high signals from all tendons. To determine if the long T2 fraction, as measured by a dual-echo UTE-MRI sequence, is a sensitive quantitative technique to the age- and bone-loss-related changes of the lower leg tendons. Methods: This is a cross-sectional study conducted between January 2018 to February 2020 in the lower legs of 14 female patients with OPe [72±6 years old, body mass index (BMI) =25.8±6.2 kg/m2] and 31 female patients with OPo (73±6 years old, BMI=22.0±3.8 kg/m2), as well as 30 female subjects with normal bone (Normal, 35±18 years old, BMI =23.2±4.3 kg/m2), were imaged on a 3T clinical scanner using a dual-echo 3D Cones UTE sequence. We defined the apparent long T2 signal fraction (aFrac-LongT2) of tendons as the ratio between the signal at the second echo time (TE =2.2 ms) to the UTE signal. The average aFrac-LongT2 and the cross-sectional area were calculated for the anterior tibialis tendons (ATTs) and the posterior tibialis tendons (PTTs). The Kruskal-Wallis rank test was used to compare the differences in aFrac-LongT2 and the cross-sectional area of the tendons between the groups. Results: The aFrac-LongT2 of the ATTs and PTTs were significantly higher in the OPo group compared with the Normal group (22.2% and 34.8% in the ATT and PTT, respectively, P<0.01). The cross-sectional area in the ATTs was significantly higher for the OPo group than in the Normal group (Normal/OPo difference was 28.7, P<0.01). Such a difference for PTTs did not reach the significance level. Mean aFrac-LongT2 and cross-sectional area in the OPe group were higher than the Normal group and lower than the OPo group. However, the differences did not show statistical significance, likely due to the higher BMI in the OPe group. Conclusions: Dual-echo UTE-MRI is a rapid quantification technique, and aFrac-LongT2 values showed significant differences in tendons between Normal and OPo patients.

7.
Bone ; 184: 117096, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38631596

RESUMO

High-resolution magnetic resonance imaging (HR-MRI) has been increasingly used to assess the trabecular bone structure. High susceptibility at the marrow/bone interface may significantly reduce the marrow's apparent transverse relaxation time (T2*), overestimating trabecular bone thickness. Ultrashort echo time MRI (UTE-MRI) can minimize the signal loss caused by susceptibility-induced T2* shortening. However, UTE-MRI is sensitive to chemical shift artifacts, which manifest as spatial blurring and ringing artifacts partially due to non-Cartesian sampling. In this study, we proposed UTE-MRI at the resonance frequency of fat to minimize marrow-related chemical shift artifacts and the overestimation of trabecular thickness. Cubes of trabecular bone from six donors (75 ± 4 years old) were scanned using a 3 T clinical scanner at the resonance frequencies of fat and water, respectively, using 3D UTE sequences with five TEs (0.032, 1.1, 2.2, 3.3, and 4.4 ms) and a clinical 3D gradient echo (GRE) sequence at 0.2 × 0.2 × 0.4 mm3 voxel size. Trabecular bone thickness was measured in 30 regions of interest (ROIs) per sample. MRI results were compared with thicknesses obtained from micro-computed tomography (µCT) at 50 µm3 voxel size. Linear regression models were used to calculate the coefficient of determination between MRI- and µCT-based trabecular thickness. All MRI-based trabecular thicknesses showed significant correlations with µCT measurements. The correlations were higher (examined with paired Student's t-test, P < 0.01) for 3D UTE images performed at the fat frequency (R2 = 0.59-0.74, P < 0.01) than those at the water frequency (R2 = 0.18-0.52, P < 0.01) and clinical GRE images (R2 = 0.39-0.47, P < 0.01). Significantly reduced correlations were observed with longer TEs. This study highlighted the feasibility of UTE-MRI at the fat frequency for a more accurate assessment of trabecular bone thickness.


Assuntos
Osso Esponjoso , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Osso Esponjoso/diagnóstico por imagem , Idoso , Masculino , Feminino , Tecido Adiposo/diagnóstico por imagem
8.
Quant Imaging Med Surg ; 14(2): 1673-1685, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38415151

RESUMO

Background: Myelin water imaging (MWI) is a myelin-specific technique, which has great potential for the assessment of demyelination and remyelination. This study develops a new MWI method, which employs a short repetition time adiabatic inversion recovery (STAIR) technique in combination with a commonly used fast spin echo (FSE) sequence and provides quantification of myelin water (MW) fractions. Method: Whole-brain MWI was performed using the short repetition time adiabatic inversion recovery prepared-fast spin echo (STAIR-FSE) technique on eight healthy volunteers (mean age: 38±14 years, four-males) and seven patients with multiple sclerosis (MS) (mean age: 53.7±8.7 years, two-males) on a 3T clinical magnetic resonance imaging scanner. To facilitate the quantification of apparent myelin water fraction (aMWF), a proton density-weighted FSE was also used during the scans to allow total water imaging. The aMWF measurements of MS lesions and normal-appearing white matter (NAWM) regions in MS patients were compared with those measured in normal white matter (NWM) regions in healthy volunteers. Both the analysis of variance (ANOVA) test and paired comparison were performed for the comparison. Results: The MW in the whole-brain was selectively imaged and quantified using the STAIR-FSE technique in all participants. MS lesions showed much lower signal intensities than NAWM in the STAIR-FSE images. ANOVA analysis revealed a significant difference in the aMWF measurements between the three groups. Moreover, the aMWF measurements in MS lesions were significantly lower than those in both NWM of healthy volunteers and NAWM of MS patients. Lower aMWF measurements in NAWM were also found in comparison with those in NWM. Conclusions: The STAIR-FSE technique is capable of measuring aMWF values for the indirect detection of myelin loss in MS, thus facilitating clinical translation of whole brain MWI and quantification, which show great potential for the detection and evaluation of changes in myelin in the brain of patients with MS for future larger cohort studies.

9.
Bioengineering (Basel) ; 11(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38247943

RESUMO

Introduction: The objective of this study was to assess the bi-exponential relaxation times and fractions of the short and long components of the human patellar tendon ex vivo using three-dimensional ultrashort echo time T1ρ (3D UTE-T1ρ) imaging. Materials and Methods: Five cadaveric human knee specimens were scanned using a 3D UTE-T1ρ imaging sequence on a 3T MR scanner. A series of 3D UTE-T1ρ images were acquired and fitted using single-component and bi-component models. Single-component exponential fitting was performed to measure the UTE-T1ρ value of the patellar tendon. Bi-component analysis was performed to measure the short and long UTE-T1ρ values and fractions. Results: The single-component analysis showed a mean single-component UTE-T1ρ value of 8.4 ± 1.7 ms for the five knee patellar tendon samples. Improved fitting was achieved with bi-component analysis, which showed a mean short UTE-T1ρ value of 5.5 ± 0.8 ms with a fraction of 77.6 ± 4.8%, and a mean long UTE-T1ρ value of 27.4 ± 3.8 ms with a fraction of 22.4 ± 4.8%. Conclusion: The 3D UTE-T1ρ sequence can detect the single- and bi-exponential decay in the patellar tendon. Bi-component fitting was superior to single-component fitting.

10.
Magn Reson Med ; 91(3): 896-910, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37755319

RESUMO

PURPOSE: To develop a 3D phase modulated UTE adiabatic T1ρ (PM-UTE-AdiabT1ρ ) sequence for whole knee joint mapping on a clinical 3 T scanner. METHODS: This new sequence includes six major features: (1) a magnetization reset module, (2) a train of adiabatic full passage pulses for spin locking, (3) a phase modulation scheme (i.e., RF cycling pair), (4) a fat saturation module, (5) a variable flip angle scheme, and (6) a 3D UTE Cones sequence for data acquisition. A simple exponential fitting was used for T1ρ quantification. Phantom studies were performed to investigate PM-UTE-AdiabT1ρ 's sensitivity to compositional changes and reproducibility as well as its correlation with continuous wave-T1ρ measurement. The PM-UTE-AdiabT1ρ technique was then applied to five ex vivo and five in vivo normal knees to measure T1ρ values of femoral cartilage, meniscus, posterior cruciate ligament, anterior cruciate ligament, patellar tendon, and muscle. RESULTS: The phantom study demonstrated PM-UTE-AdiabT1ρ 's high sensitivity to compositional changes, its high reproducibility, and its strong linear correlation with continuous wave-T1ρ measurement. The ex vivo and in vivo knee studies demonstrated average T1ρ values of 105.6 ± 8.4 and 77.9 ± 3.9 ms for the femoral cartilage, 39.2 ± 5.1 and 30.1 ± 2.2 ms for the meniscus, 51.6 ± 5.3 and 29.2 ± 2.4 ms for the posterior cruciate ligament, 79.0 ± 9.3 and 52.0 ± 3.1 ms for the anterior cruciate ligament, 19.8 ± 4.5 and 17.0 ± 1.8 ms for the patellar tendon, and 91.1 ± 8.8 and 57.6 ± 2.8 ms for the muscle, respectively. CONCLUSION: The 3D PM-UTE-AdiabT1ρ sequence allows volumetric T1ρ assessment for both short and long T2 tissues in the knee joint on a clinical 3 T scanner.


Assuntos
Menisco , Ligamento Patelar , Reprodutibilidade dos Testes , Articulação do Joelho/diagnóstico por imagem , Ligamento Cruzado Anterior/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
11.
NMR Biomed ; 37(1): e5040, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37740595

RESUMO

The purpose of this study is to investigate the use of ultrashort echo time (UTE) magnetic resonance imaging (MRI) techniques (T1 and magnetization transfer [MT] modeling) for imaging of the Achilles tendons and entheses in patients with psoriatic arthritis (PsA) compared with asymptomatic volunteers. The heels of twenty-six PsA patients (age 59 ± 15 years, 41% female) and twenty-seven asymptomatic volunteers (age 33 ± 11 years, 47% female) were scanned in the sagittal plane with UTE-T1 and UTE-MT modeling sequences on a 3-T clinical scanner. UTE-T1 and macromolecular proton fraction (MMF; the main outcome of MT modeling) were calculated in the tensile portions of the Achilles tendon and at the enthesis (close to the calcaneus bone). Mann-Whitney-U tests were used to examine statistically significant differences between the two cohorts. UTE-T1 in the entheses was significantly higher for the PsA group compared with the asymptomatic group (967 ± 145 vs. 872 ± 133 ms, p < 0.01). UTE-T1 in the tendons was also significantly higher for the PsA group (950 ± 145 vs. 850 ± 138 ms, p < 0.01). MMF in the entheses was significantly lower in the PsA group compared with the asymptomatic group (15% ± 3% vs. 18% ± 3%, p < 0.01). MMF in the tendons was also significantly lower in the PsA group compared with the asymptomatic group (17% ± 4% vs. 20% ± 5%, p < 0.01). Percentage differences in MMF between the asymptomatic and PsA groups (-16.6% and -15.0% for the enthesis and tendon, respectively) were higher than the T1 differences (10.8% and 11.7% for the enthesis and tendon, respectively). The results suggest higher T1 and lower MMF in the Achilles tendons and entheses in PsA patients compared with the asymptomatic group. This study highlights the potential of UTE-T1 and UTE-MT modeling for quantitative evaluation of entheses and tendons in PsA patients.


Assuntos
Tendão do Calcâneo , Artrite Psoriásica , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Adulto Jovem , Masculino , Tendão do Calcâneo/diagnóstico por imagem , Artrite Psoriásica/diagnóstico por imagem , Artrite Psoriásica/patologia , Imageamento por Ressonância Magnética/métodos , Prótons
12.
Front Radiol ; 3: 1263491, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840897

RESUMO

Introduction: Numerous techniques for myelin water imaging (MWI) have been devised to specifically assess alterations in myelin. The biomarker employed to measure changes in myelin content is known as the myelin water fraction (MWF). The short TR adiabatic inversion recovery (STAIR) sequence has recently been identified as a highly effective method for calculating MWF. The purpose of this study is to develop a new clinical transitional myelin water imaging (MWI) technique that combines STAIR preparation and echo-planar imaging (EPI) (STAIR-EPI) sequence for data acquisition. Methods: Myelin water (MW) in the brain has shorter T1 and T2 relaxation times than intracellular and extracellular water. In the proposed STAIR-EPI sequence, a short TR (e.g., ≤300 ms) together with an optimized inversion time enable robust long T1 water suppression with a wide range of T1 values [i.e., (600, 2,000) ms]. The EPI allows fast data acquisition of the remaining MW signals. Seven healthy volunteers and seven patients with multiple sclerosis (MS) were recruited and scanned in this study. The apparent myelin water fraction (aMWF), defined as the signal ratio of MW to total water, was measured in the lesions and normal-appearing white matter (NAWM) in MS patients and compared with those measured in the normal white matter (NWM) in healthy volunteers. Results: As seen in the STAIR-EPI images acquired from MS patients, the MS lesions show lower signal intensities than NAWM do. The aMWF measurements for both MS lesions (3.6 ± 1.3%) and NAWM (8.6 ± 1.2%) in MS patients are significantly lower than NWM (10 ± 1.3%) in healthy volunteers (P < 0.001). Discussion: The proposed STAIR-EPI technique, which can be implemented in MRI scanners from all vendors, is able to detect myelin loss in both MS lesions and NAWM in MS patients.

13.
Quant Imaging Med Surg ; 13(10): 7304-7337, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37869282

RESUMO

This review describes targeted magnetic resonance imaging (tMRI) of small changes in the T1 and the spatial properties of normal or near normal appearing white or gray matter in disease of the brain. It employs divided subtracted inversion recovery (dSIR) and divided reverse subtracted inversion recovery (drSIR) sequences to increase the contrast produced by small changes in T1 by up to 15 times compared to conventional T1-weighted inversion recovery (IR) sequences such as magnetization prepared-rapid acquisition gradient echo (MP-RAGE). This increase in contrast can be used to reveal disease with only small changes in T1 in normal appearing white or gray matter that is not apparent on conventional MP-RAGE, T2-weighted spin echo (T2-wSE) and/or fluid attenuated inversion recovery (T2-FLAIR) images. The small changes in T1 or T2 in disease are insufficient to produce useful contrast with conventional sequences. To produce high contrast dSIR and drSIR sequences typically need to be targeted for the nulling TI of normal white or gray matter, as well as for the sign and size of the change in T1 in these tissues in disease. The dSIR sequence also shows high signal boundaries between white and gray matter. dSIR and drSIR are essentially T1 maps. There is a nearly linear relationship between signal and T1 in the middle domain (mD) of the two sequences which includes T1s between the nulling T1s of the two acquired IR sequences. The drSIR sequence is also very sensitive to reductions in T1 produced by Gadolinium based contrast agents (GBCAs), and when used with rigid body registration to align three-dimensional (3D) isotropic pre and post GBCA images may be of considerable value in showing subtle GBCA enhancement. In serial MRI studies performed at different times, the high signal boundaries generated by dSIR and drSIR sequences can be used with rigid body registration of 3D isotropic images to demonstrate contrast arising from small changes in T1 (without or with GBCA enhancement) as well as small changes in the spatial properties of normal tissues and lesions, such as their site, shape, size and surface. Applications of the sequences in cases of multiple sclerosis (MS) and methamphetamine dependency are illustrated. Using targeted narrow mD dSIR sequences, widespread abnormalities were seen in areas of normal appearing white matter shown with conventional T2-wSE and T2-FLAIR sequences. Understanding of the features of dSIR and drSIR images is facilitated by the use of their T1-bipolar filters; to explain their targeting, signal, contrast, boundaries, T1 mapping and GBCA enhancement. Targeted MRI (tMRI) using dSIR and drSIR sequences may substantially improve clinical MRI of the brain by providing unequivocal demonstration of abnormalities that are not seen with conventional sequences.

14.
J Biomech ; 160: 111825, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37856976

RESUMO

Patients with psoriatic arthritis commonly have abnormalities of their entheses, which are the connections between tendons and bone. There are shortcomings with the use of conventional magnetic resonance imaging (MRI) sequences for the evaluation of entheses and tendons, whereas ultrashort echo time (UTE) sequences are superior for the detection of high signals, and can also be used for non-invasive quantitative assessments of these structures. The combination of UTE-MRI with an adiabatic-T1ρ preparation (UTE-Adiab-T1ρ) allows for reliable assessment of entheses and tendons with decreased susceptibility to detrimental magic angle effects. This study aimed to investigate the relationship between quantitative UTE-MRI measures and the biomechanical properties of Achilles tendons and entheses. In total, 28 tendon-enthesis sections were harvested from 11 fresh-frozen human cadaveric foot-ankle specimens (52 ± years old). Tendon-enthesis sections were scanned using the UTE-Adiab-T1ρ and UTE-T1 sequences on a clinical 3 T scanner. MRI-based measures and indentation tests were performed on the enthesis, transitional, and tensile tendon zones of the specimens. Hayes' elastic modulus showed significant inverse correlations (Spearman's) with UTE-Adiab-T1ρ in all zones (R= - 0.46, - 0.54, and - 0.61 in enthesis, transition, and tensile tendon zones, respectively). Oliver-Pharr's elastic modulus showed significant inverse correlations with UTE-Adiab-T1ρ in transition (R= - 0.52) and tensile tendon zone (R=- 0.60). UTE-T1 did not show significant correlations with the elastic modulus. UTE-MRI and elastic modulus were significantly lower in the tensile tendon compared with the enthesis regions This study highlights the potential of the UTE-Adiab-T1ρ technique for the non-invasive evaluation of tendons and enthuses.

15.
Front Endocrinol (Lausanne) ; 14: 1148345, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025410

RESUMO

Introduction: Ultrashort echo time (UTE) MRI enables quantitative assessment of cortical bone. The signal ratio in dual-echo UTE imaging, known as porosity index (PI), as well as the signal ratio between UTE and inversion recovery UTE (IR-UTE) imaging, known as the suppression ratio (SR), are two rapid UTE-based bone evaluation techniques developed to reduce the time demand and cost in future clinical studies. The goal of this study was to investigate the performance of PI and SR in detecting bone quality differences between subjects with osteoporosis (OPo), osteopenia (OPe), and normal bone (Normal). Methods: Tibial midshaft of fourteen OPe (72 ± 6 years old), thirty-one OPo (72 ± 6 years old), and thirty-seven Normal (36 ± 19 years old) subjects were scanned using dual-echo UTE and IR-UTE sequences on a clinical 3T scanner. Measured PI, SR, and bone thickness were compared between OPo, OPe, and normal bone (Normal) subjects using the Kruskal-Wallis test by ranks. Spearman's rank correlation coefficients were calculated between dual-energy x-ray absorptiometry (DEXA) T-score and UTE-MRI results. Results: PI was significantly higher in the OPo group compared with the Normal (24.1%) and OPe (16.3%) groups. SR was significantly higher in the OPo group compared with the Normal (41.5%) and OPe (21.8%) groups. SR differences between the OPe and Normal groups were also statistically significant (16.2%). Cortical bone was significantly thinner in the OPo group compared with the Normal (22.0%) and OPe (13.0%) groups. DEXA T-scores in subjects were significantly correlated with PI (R=-0.32), SR (R=-0.50), and bone thickness (R=0.51). Discussion: PI and SR, as rapid UTE-MRI-based techniques, may be useful tools to detect and monitor bone quality changes, in addition to bone morphology, in individuals affected by osteoporosis.


Assuntos
Osso e Ossos , Osteoporose , Humanos , Feminino , Idoso , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Porosidade , Osso Cortical/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Osteoporose/diagnóstico por imagem
16.
Quant Imaging Med Surg ; 13(2): 585-597, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36819276

RESUMO

Background: In this study, we investigated the feasibility of quantitative ultrashort echo time (qUTE) magnetic resonance (MR) imaging techniques in the detection and quantification of iron oxide nanoparticle (IONP)-labeled stem cells. Methods: A stem cell phantom containing multiple layers of unlabeled or labeled stem cells with different densities was prepared. The phantom was imaged with quantitative UTE (qUTE) MR techniques [i.e., UTE-T1 mapping, UTE-T2* mapping, and UTE-based quantitative susceptibility mapping (UTE-QSM)] as well as with a clinical T2 mapping sequence on a 3T clinical MR system. For T1 mapping, a variable flip angle (VFA) method based on actual flip angle imaging (AFI) technique was utilized. For T2* mapping and UTE-QSM, multiple images with variable, interleaved echo times including UTE images and gradient recalled echo (GRE) images were used. For UTE-QSM, the phase information from the multi-echo images was utilized and processed using a QSM framework based on the morphology-enabled dipole inversion (MEDI) algorithm. The qUTE techniques were also evaluated in an ex vivo experiment with a mouse injected with IONP-labeled stem cells. Results: In the phantom experiment, the parameters estimated with qUTE techniques showed high linearity with respect to the density of IONP-labeled stem cells (R2>0.99), while the clinical T2 parameter showed impaired linearity (R2=0.87). In the ex vivo mouse experiment, UTE-T2* mapping and UTE-QSM showed feasibility in the detection of injected stem cells with high contrast, whereas UTE-T1 and UTE-T2* showed limited detection. Overall, UTE-QSM demonstrated the best contrast of all, with other methods being subjected more to a confounding factor due to different magnetic susceptibilities of various types of neighboring tissues, which creates inhomogeneous contrast that behaves similar to IONP. Conclusions: In this study, we evaluated the feasibility of a series of qUTE imaging techniques as well as conventional T2 mapping for the detection of IONP-labeled stem cells in vitro and ex vivo. UTE-QSM performed superior amongst other qUTE techniques as well as conventional T2 mapping in detecting stem cells with high contrast.

17.
Bone ; 169: 116676, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36657630

RESUMO

Ultrashort echo time (UTE) MRI can image and consequently enable quantitative assessment of cortical bone. UTE-MRI-based evaluation of bone is largely underutilized due to the high cost and time demands of MRI in general. The signal ratio in dual-echo UTE imaging, known as porosity index (PI), as well as the signal ratio between UTE and inversion recovery UTE (IR-UTE) imaging, known as the suppression ratio (SR), are two rapid UTE-based bone evaluation techniques (∼ 5 mins scan time each), which can potentially reduce the time demand and cost in future clinical studies. This study aimed to investigate the correlations of PI and SR measures with cortical bone microstructural and mechanical properties. Cortical bone strips (n = 135) from tibial and femoral midshafts of 37 donors (61 ± 24 years old) were scanned using a dual-echo 3D Cones UTE sequence and a 3D Cones IR-UTE sequence for PI and SR calculations, respectively. Average bone mineral density, porosity, and pore size were measured using microcomputed tomography (µCT). Bone mechanical properties were measured using 4-point bending tests. The µCT measures showed significant correlations with PI (moderate to strong, R = 0.68-0.71) and SR (moderate, R = 0.58-0.68). Young's modulus, yield stress, and ultimate stress demonstrated significant moderate correlations with PI and SR (R = 0.52-0.62) while significant strong correlations with µCT measures (R > 0.7). PI and SR can potentially serve as fast and noninvasive (non-ionizing radiation) biomarkers for evaluating cortical bone in various bone diseases.


Assuntos
Osso e Ossos , Osso Cortical , Microtomografia por Raio-X , Porosidade , Imageamento por Ressonância Magnética/métodos , Imageamento Tridimensional/métodos
18.
Skeletal Radiol ; 52(11): 2149-2157, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36607355

RESUMO

Novel compositional magnetic resonance (MR) imaging techniques have allowed for both the qualitative and quantitative assessments of tissue changes in osteoarthritis, many of which are difficult to characterize on conventional MR imaging. Ultrashort echo time (UTE) and zero echo time (ZTE) MR imaging have not been broadly implemented clinically but have several applications that leverage contrast mechanisms for morphologic evaluation of bone and soft tissue, as well as biochemical assessment in various stages of osteoarthritis progression. Many of the musculoskeletal tissues implicated in the initiation and progression of osteoarthritis are short T2 in nature, appearing dark as signal has already decayed to its minimum when image sampling starts. UTE and ZTE MR imaging allow for the qualitative and quantitative assessments of these short T2 tissues (bone, tendon, calcified cartilage, meniscus, and ligament) with both structural and functional reference standards described in the literature [1-3]. This review will describe applications of UTE and ZTE MR imaging in musculoskeletal tissues focusing on its role in knee osteoarthritis. While the review will address tissue-specific applications of these sequences, it is understood that osteoarthritis is a whole joint process with involvement and interdependence of all tissues. KEY POINTS: • UTE MR imaging allows for the qualitative and quantitative evaluation of short T2 tissues (bone, calcified cartilage, and meniscus), enabling identification of both early degenerative changes and subclinical injuries that may predispose to osteoarthritis. • ZTE MR imaging allows for the detection of signal from bone, which has some of the shortest T2 values, and generates tissue contrast similar to CT, potentially obviating the need for CT in the assessment of osseous features of osteoarthritis.


Assuntos
Interpretação de Imagem Assistida por Computador , Osteoartrite do Joelho , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Osteoartrite do Joelho/diagnóstico por imagem , Espectroscopia de Ressonância Magnética
19.
Front Neurosci ; 16: 1033801, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36419458

RESUMO

Purpose: Quantitative susceptibility mapping (QSM) has surfaced as a promising non-invasive quantitative biomarker that provides information about tissue composition and microenvironment. Recently, ultrashort echo time quantitative susceptibility mapping (UTE-QSM) has been investigated to achieve QSM of short T2 tissues. As the feasibility of UTE-QSM has not been demonstrated in the brain, the goal of this study was to develop a UTE-QSM with an efficient 3D cones trajectory and validate it in the human brain. Materials and methods: An ultrashort echo time (UTE) cones sequence was implemented in a 3T clinical MRI scanner. Six images were acquired within a single acquisition, including UTE and gradient recalled echo (GRE) images. To achieve QSM, a morphology-enabled dipole inversion (MEDI) algorithm was incorporated, which utilizes both magnitude and phase images. Three fresh cadaveric human brains were scanned using the 3D cones trajectory with eight stretching factors (SFs) ranging from 1.0 to 1.7. In addition, five healthy volunteers were recruited and underwent UTE-QSM to demonstrate the feasibility in vivo. The acquired data were processed with the MEDI-QSM pipeline. Results: The susceptibility maps estimated by UTE-QSM showed reliable tissue contrast. In the ex vivo experiment, high correlations were found between the baseline (SF of 1.0) and SFs from 1.1 to 1.7 with Pearson's correlations of 0.9983, 0.9968, 0.9959, 0.9960, 0.9954, 0.9943, and 0.9879, respectively (all p-values < 0.05). In the in vivo experiment, the measured QSM values in cortical gray matter, juxtacortical white matter, corpus callosum, caudate, and putamen were 25.4 ± 4.0, -21.8 ± 3.2, -22.6 ± 10.0, 77.5 ± 18.8, and 53.8 ± 7.1 ppb, consistent with the values reported in the literature. Conclusion: Ultrashort echo time quantitative susceptibility mapping enables direct estimation of the magnetic susceptibility in the brain with a dramatically reduced total scan time by use of a stretched 3D cones trajectory. This technique provides a new biomarker for susceptibility mapping in the in vivo brain.

20.
Sensors (Basel) ; 22(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36236557

RESUMO

In this study, the feasibility of accelerated quantitative Ultrashort Echo Time Cones (qUTE-Cones) imaging with compressed sensing (CS) reconstruction is investigated. qUTE-Cones sequences for variable flip angle-based UTE T1 mapping, UTE adiabatic T1ρ mapping, and UTE quantitative magnetization transfer modeling of macromolecular fraction (MMF) were implemented on a clinical 3T MR system. Twenty healthy volunteers were recruited and underwent whole-knee MRI using qUTE-Cones sequences. The k-space data were retrospectively undersampled with different undersampling rates. The undersampled qUTE-Cones data were reconstructed using both zero-filling and CS reconstruction. Using CS-reconstructed UTE images, various parameters were estimated in 10 different regions of interests (ROIs) in tendons, ligaments, menisci, and cartilage. Structural similarity, percentage error, and Pearson's correlation were calculated to assess the performance. Dramatically reduced streaking artifacts and improved SSIM were observed in UTE images from CS reconstruction. A mean SSIM of ~0.90 was achieved for all CS-reconstructed images. Percentage errors between fully sampled and undersampled CS-reconstructed images were below 5% for up to 50% undersampling (i.e., 2× acceleration). High linear correlation was observed (>0.95) for all qUTE parameters estimated in all subjects. CS-based reconstruction combined with efficient Cones trajectory is expected to achieve a clinically feasible scan time for qUTE imaging.


Assuntos
Imageamento Tridimensional , Imageamento por Ressonância Magnética , Humanos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Tendões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA